光调制器加载光栅图时能够实现光束偏转,也可以叠加螺旋相位的图,产生轨道角动量,下文就是介绍了三种方法:1. 产生单个光栅,2. 轨道角动量,3. 多个光束叠加。Matlab下8bit图片的单个像素表示范围可以是0-255之间的整数,也可以是0-1之间的小数,因为0-1表示有更加方便,所以下面都是采用这种方法,即0对应相位延迟量为零,1对应相位延迟量为2pi。光栅制作单个光斑方法1:易于控制X和Y方向的周期数量 %% 光栅 % X和Y方向的斜面,取值范围0-1 [x, y]= meshgrid(linspace(0, 1, 512)); % 光栅的数量 M = 3; N = 4; % 叠加光栅后 ...
光纤之间加入光栅隔离器。这对高速光纤通信系统、相干光纤通信系统、频分复用光纤通信系统以及精密光学测量等系统中的应用都是十分重要的问题。光隔离器是只允许光信号沿一个方向传输的双端口光器件,即当光信号沿正向传输时,具有很低的损耗,光路连通;而当光信号沿反向传输时,损耗很大,光路被阻断。光隔离器是一种光非互易传输耦合器,即当输入与输出端口互换时,器件的工作特性是不一样的。一、光栅隔离的主要参数光隔离器主要的性能参数是正向插入损耗、反向(逆向)隔离度、回波损耗,其定义分别为:(1)正向插入损耗 其定义为:正向光路传输时其输出光功率与输入光功率之比,以分贝的形式表示应为:L=10 lg(Po正/Pi正 ...
菲涅尔透镜,光栅图,全息图,泽尼克多项式等,下文将一一介绍每种图片的生成方法。一、贝塞尔光束打开meadowlark空间光调制器官方应用软件Blink,找到Pattern Generation,在下拉箭头当中选择贝塞尔光束(Bessel Beam),然后点击Generate Image,即进入了相位图生成界面。a.Spiral单选按钮可以生成涡旋光,参数栏里填上不同的参数可以得到不同的涡旋光,例如个数和中心值。b.Fork,可以生成叉型光栅,不同参数也就得到不同的光栅。c.Axicon,可以生成轴棱锥,参数框里填入波数。d.Rings可以生成同心圆环,输入内径与外径,以像素为单位;输入参数数值 ...
一般都是基于光栅单色仪实现的,其中根据使用光栅种类的不同又分为普通光栅单色仪也就是机械刻划的光栅单色仪的超光谱成像系统和基于体布拉格光栅(VBG)的单色仪(LLTF)制成的超光谱成像系统这两类的超光谱具有超高的光谱分辨率,所以通道数对于这两类设备一般没有太大的意义,大家比较常见的都是比较光谱分辨率和使用波段,这两种之间又会有一些差异, 基于刻划光栅的超光谱的光谱分辨率的极限会比基于体布拉格光栅的超光谱的光谱分辨率还要高,一般而言刻划光栅的超光谱分辨率最好的情况下可以到0.02nm-0.05nm这个数量级的水平,体布拉格光栅的超光谱极限分辨率一般都在0.6-2nm这个水平,虽然在光谱分辨率极限上 ...
焦,之后经过光栅以及其他光学组件被CCD接收,从而实现样品某一平面PL或者拉曼的Mapping。根据前面所述,也就是说在光路上,样品焦平面与狭缝处平面是共轭的,而具体到扫描过程中的每一次探测,每一次探测的焦点与狭缝处焦点也是一对共轭点,其他位置的信号会被狭缝所过滤掉。这样极大地减少了杂散光以及非焦点处信号对结果的影响,提高了信噪比与光谱分辨率。顺带,我们也可以推出,狭缝宽度是影响共聚焦拉曼成像系统的一个重要参数,狭缝宽度过小,最终CCD接收到的信号强度过弱;狭缝宽度过大,焦点外的信号进入CCD的量会变多,光谱分辨率和信噪比会变差,因此,在共聚焦拉曼成像系统测量过程中合理选择狭缝宽度十分重要。您 ...
形(称为圆形光栅)。当视觉刺激图像在屏幕的同时,受试者被要求移动他们的手指。共计进行100次试验,每次试验持续7s,屏幕上光栅显示的时间为2.5到3s。在OPM-MEG数据采集之后,使用一种新开发的光学扫描技术测量了传感器在头皮上的位置和方向。对OPM放置的准确了解允许使用波束形成器进行数据建模,以精确确定大脑中任何可测量的神经磁作用起源。图2显示了这些实验的结果。左侧面板显示通过光学扫描确定的OPM在头皮上的位置。中间和右侧面板分别显示了被测大脑在视觉皮层和运动皮层中功能。我们能够测量高精度的MEG数据,该数据表明呈现的视觉刺激引起了初级视觉皮层55-70 Hz“伽马”振荡的增加。同时,手指 ...
级功率放大和光栅对压缩脉冲,产生脉宽260fs、平均功率3.3W激光脉冲。随后脉冲被送入约30cm长ND-HNLF,根据FROG测量结果,其脉冲宽度小于70fs,平均功率1.8 W,峰值功率约为13kW。然后连接~ 30厘米长HNLF产生倍频程频谱,波长覆盖从970~2200nm。用PPLN晶体对2000nm波段进行倍频后与1000nm基频光一同输入共线f-to-2f干涉仪,生成一个信噪比大于30dB、分辨率~300 kHz f0信号。图1:载波包络零频f0与fbeat探测;插图:倍频程光谱~970-2200nm图2a显示对fbeat进行测量的实验结果,可以得到自由运转下fbeat相位噪声为2 ...
散元件一般是光栅或者棱镜.它的作用是将入射光在空间内按一定波长规律分开,使单束复合光变成多束单色光。光栅与光谱分辨率和光谱范围有关,光栅刻线密度越大,光谱分辨率越高,同时光谱检测范围也越窄,因此应根据具体测试需求合理选择光栅。4、聚焦元件聚焦色散后的光束,使各单色光在焦平面上形成对应的入射狭缝的像,每一个波长对应一个像元。5、检测元件在焦平面处放置探测器阵列,用于测量不同波长的光强度.探测器可以是CCD或者InGaAs探测器.探测器利用了光电效应,对不同波长的光的响应度不同,因此不同探测器检测范围不一样.三、Nanobase拉曼光谱仪 昊量光电独家代理韩国Nanobase拉曼光谱仪,采用VP ...
光谱所需求的光栅光谱仪要求光谱分辨率越高越好,受限于成本等原因普遍采用分辨率优于5个波数的光栅光谱仪即可。并且考虑到拉曼信号是弱信号,普通的反射式光栅单色仪的光利用效率都会比较低,一般来说都只有50%-60%左右的水平,随着单色仪技术的发展,现在可以使用透射式光栅光谱仪(VHG),这样可以使得光利用效率大幅提高,最高效率可达到90%以上的水平。拉曼信号是非常弱的信号,所以要求采集最终信号的CCD具有较高的灵敏度和量子效率,一般会选深度制冷型CCD来提高信噪比,由于只需要光谱和强度两个信息,光谱信息由光谱仪决定,只需要不同波数上的强度信息,所以出于成本考虑都会使用线阵CCD。法国GreatEye ...
晶体长度当选择一种晶体时,晶体长度是一个重要的因素。对于窄带连续波光源,我们的20mm到40mm的较长晶体长度将提供最好的效率。然而,对于脉冲光源,长晶体对激光带宽和脉冲宽度敏感性增加,会具有负面效应。对于纳秒脉冲,我们通常推荐10mm长度,而最短的0.5mm到1mm的长度则适用于飞秒脉冲系统。极化为了利用铌酸锂的最高非线性系数,输入光应该是e偏振的,即偏振态必须与晶体偶极矩匹配。通过使光的偏振轴与晶体的厚度方向平行可实现这一点。这可用于所有非线性相互作用。聚焦和光路设计由于PPLN是一种非线性材料,当晶体中光子的强度最大时,将获得从输入光子到产生光子的最高转换效率。这通常是通过晶体的端面正入 ...
或 投递简历至: hr@auniontech.com