展示全部
氦氖激光器(632.8nm 0.5-35mW)
单波长紧凑型氩离子激光器(TEM00)
高功率氩离子激光器(1W)
多波长合束氩离子激光器
高性价比氩离子激光器
氦镉和氩离子气体激光器的六个优势介绍氦镉激光器和氩离子激光器作为中高功率的连续光输出一直是工业和科学应用中不可缺少的一部分,但它们正在逐渐被固态激光器占据市场份额,固态激光器具有稳定、线宽窄、能效高、尺寸小、维护成本低、使用寿命长等特点,是传统气体激光器和离子激光器紫外波段可靠且稳定的替代品。正文自1960 年代以来,氩离子激光器一直是工业和科学应用中高功率连续光输出不可或缺的一部分。而1970年,氦镉(HeCd)气体激光器进入市场后,它便成为了多种应用方向中更高效、更紧凑的替代品。这些气体和离子激光器长期以来一直满足着市场对325 nm和351.1 nm紫外波长的需求,但现在它们也正在逐渐失 ...
分子激光器,气体激光器是由原子能级跃迁产生的激光器,主要激励方式有电激励,光激励,气动激励等,气体激光器一般具有非常好的光束质量和相干性。N2 Laser(氮分子激光器,Nitrogen laser)337.1nm, 427nmAr+ Laser(氩离子激光器)488nm, 514.5nm, 351.1nm, 363.8nmHeNe Laser(氦氖激光器)632.8nm, 543.5nm, 594.1nm, 611.9nm, 1153nm, 1523nmCu Laser(铜蒸汽激光器)510.6nm, 578.2nmKr+ Laser(氪离子激光器)647.1nm, 676.4nmNd:YA ...
分子激光器,气体激光器,固体激光器,半导体激光器,染料激光器,自由电子激光器和光纤激光器这几种。单频激光器(single-frequency laser)它的特点是输出的激光模式既满足单横模又满足单纵模,其谐振器内只有单一纵模进行震荡,并且输出激光器光斑的能量分布呈高斯分布,除了激光器激光本身具有极好的单色性和方向性之外,单频激光器拥有普通激光器难以达到的相干长度和超窄的谱线宽度的特点。从光子的观点来看,腔的模式也就是腔内可以区分的光子状态,同一模式内的光子具有完全相同的状态,腔内电磁场的空间分布可分解为沿传播方向(腔轴线方向)的分布和在垂直于传播方向的横截面内的分布。其中,腔模沿腔轴线方向的 ...
分子激光器,气体激光器,固体激光器,半导体激光器,染料激光器,自由电子激光器和光纤激光器这几种。光纤激光器是使用稀土掺杂类的光纤作为工作物质的激光器,虽然本质上是固体激光器,但跟常见的固体激光器外形上区别很大,所以还是区分开来。常见的光纤激光器都是由泵浦光来泵浦稀土掺杂光纤产生新的波长的光,由于光纤的纤芯很细,在泵浦光的作用下,光纤内很容易形成高功率密度,使得激光工作物质的能级间形成粒子数反转,在加入适当的正反馈回路构成谐振腔之后就可以产生激光震荡。光纤激光器谐振腔的构成一般会有这么几种,第一种是常见的用F-P腔,即法布里-珀罗腔,如下图所示第二种是用激光在光纤上刻写光栅形成光纤光栅作为谐振腔 ...
分子激光器,气体激光器,固体激光器,半导体激光器,染料激光器,自由电子激光器和光纤激光器这几种。光纤光栅激光器在频域上可以分为单波长和多波长两类,在时域上可以分为连续和脉冲两类。传统的单波长光纤光栅激光器主要有两种:分布布拉格反射(DBR,Distributed Bragg Reflective)光纤激光器和分布式反馈(DFB,Distributed Feed Back)光纤光栅激光器。如下图所示,图为DFB光纤光栅激光器的基本结构示意图,泵浦激光器有源区和刻有光栅的稀土掺杂光纤光栅反馈区同为一体构成谐振腔。只用一个光纤光栅来实现光反馈和波长选择,频率稳定性好,同时避免了稀土掺杂光纤与光栅的溶 ...
μmCO分子气体激光器(5~6μm)近红外激光器750nm~2500nm掺钕固体激光器(2064nm)、砷化钙(CaAs)半导体激光器(800nm)可见光激光器400nm~700nm氦氖(632.8nm)、氩离子(488nm)、红宝石(694.3nm)、等近紫外激光器200nm~400nm氟化氙(XeF)、氟化氪(Krf)、氮(N)分子激光器真空紫外激光器50nm~200nm氙(Xe)、氢(H)分子激光器X射线激光器0.01~50nm目前多处于探索阶段除了激励源和激光工作介质之外还需要能使激发光放大的光学谐振腔,如两个平面反射镜组成的F-P谐振腔(如图1中所示),其中一块反射镜几乎全反射,另一 ...
的陈旧氩离子气体激光器,在4H-SiC和6H-SiC材料的光致发光以及拉曼光谱实验中获得了清晰的结果。349NX具有无干扰信号、线宽窄、能效高、尺寸小、维护成本低、使用寿命长等特点,为实验提供了准确性与灵活性。正文近日,来自Linköping University的Ivan Ivanov教授团队利用Skylark的349NX激光器成功替代了实验室中的陈旧氩离子气体激光器,在4H-SiC和6H-SiC材料的光致发光以及拉曼光谱实验中获得了清晰的结果。英国Skylark公司致力于单频激光器的研发,而这次实验室采购的型号349NX拥有349nm的激光波长和100mw的输出功率。Ivanov教授解释, ...
外(FIR)气体激光器、量子级联激光器(QCLs)和光导电天线(PCAs)。FIR气体激光器是基于高功率、中红外CO的2-激光泵浦一个太赫兹腔。它们的太赫兹发射可以是连续波(cw),在2.52THz时,输出功率超过150mW。输出波长取决于太赫兹谐振器中的气体。然而,连续波激光器只发射一条线,而且稳定的操作可能具有挑战性。zui近,相对紧凑的太赫兹qcl开始在没有低温恒温器的情况下工作,使用热电冷却器,温度高达250K。在频率梳操作中,带宽一直高于一个八度的,但它仍然被限制在1THz-6THz。zui近,报道的峰值输出功率达到2W(58K,3.3THz,单模)。尽管取得了很好的进展,但还需要更 ...
同的类型,如气体激光器、色心激光器、差频产生、光学参量振荡器、铅盐二极管和zui近开发的量子级联激光器(qcl)等。近年来发展非常迅速的量子级联激光器正在迅速填补波长轴上的空穴,使其成为气体分析的有吸引力的光源。大多数qcl具有定义良好的中心波数和窄线宽,允许准确的分子识别。下一个重要的因素是优化光和气体体积之间的相互作用长度。在这种情况下,考虑到有时气体体积有限,通常选择使用专门设计的光学腔将光集中在限制气体的体积中。这些空腔采用两种不同的设计方法,即谐振腔或多通腔。共振腔提供了在小于一升的体积内获得千米数量级的相互作用距离的可能性。然而,谐振器有很强的限制,使其实现困难。他们需要反射率高于 ...
OPCPA、气体激光器、可调谐激光器等。2.1 激光检测SID4 波前传感器与其光束分析软件相结合,可对激光进行完整的诊断:波前像差、强度分布、激光束质量参数(M2、发散角、束腰等)。Phasics 的波前分析仪可以定位在光学装置的任何点,无论光束是准直的还是发散的。Phasics SID4波前传感器适用于从紫外(190nm)到远红外(14um)的任何连续或脉冲激光。2.2 自适应光学Phasics波前分析仪可与任何可变形光学器件兼容:如压电可变形镜、机械可变形镜、电磁可变形镜和MEMS可变形镜以及空间光调制器和自适应透镜。为了校正超快和超强激光,Phasics自适应光学环路通过波前像差补偿实 ...
或 投递简历至: hr@auniontech.com