展示全部
冷原子用法拉第隔离器
时间分配和同步系统(计时分配系统)
超高分辨率光谱分析仪(600nm-1700nm,10pm分辨率)
大模场-锥形掺镱光纤及模块(T-DCF)
1um/1.5um高功率光纤放大器
C,L波段光放大器
MPBC ROPA元件
MPBC 2RU高功率放大器
Superlum超辐射发光二极管(SLD)/宽带光源
500W皮秒光纤激光放大器
2um波段光纤放大器
摘要:光放大技术是指不需要进行光—电—光的转换,直接对光信号进行实时、在线、透明放大的技术。其核心器件为光放大器,它是一种全光放大器,主要由增益介质、输入输出结构等构成,其作用是增强光信号的功率,放大输入的弱光信号。在光纤通信技术中,由传统的光电混合中继放大器到纯光放大器是一个重大的飞跃。这意味着光电中继器中由于电子响应速度和宽带限制所带来的“电子瓶颈”的影响将不复存在,利用原有的系统进行高速率信号传输将成为现实。同时,它也使得光通信系统中波分复用技术和密集波分复用技术的实现成为可能。一、光放大器的基本原理 根据放大所采用的增益介质和放大工作原理的不同,可对放大器做不同的区分。按照采用的增益 ...
MOGLabs光放大系统介绍锥形半导体激光放大系统是一种采用锥形半导体激光器放大种子光的结构。由于单频单模的激光器的输出功率受限,可以采用波长可调谐、单模特性以及光束质量等激光特性较好的种子光,通过聚焦透镜注入到锥形波导放大器中,而激光则从放大器的锥形区射出,在不改变激光原有特性的基础上,实现激光功率的放大。MOGLabs的MSA光放大系统是一个半导体激光放大器包含种子激光器。系统的核心是放大器模块(Amplifier block)搭载了半导体锥形放大器二极管。柱形镜(Cylindrical lens)提供散光补偿,还包含两个法拉第隔离器(Faraday isolator),锥形放大器输入侧的 ...
望远镜阵,激光放大器链等)基础设施有极为重要的意义。未来各种大科学装置对于计时分发的稳定性的要求将会越来越高。基于自由电子激光的最新一代高亮度超快X射线光源要求其分配到加速器和激光系统的射频信号具备<10fs的计时精度。 在粒子加速领域,基于MENHIR-1550 1550nm GHz重频飞秒激光器的计时分配系统,可实现加速器和激光器之间的飞秒量级的同步。传输系统采用MENHIR-1550 产生的超低噪音脉冲序列作为时间参考基准。来自主振荡器的时基信号通过光纤链路传递至多个远端的终端站,同时对传输延时加以稳定控制。锁模激光或微波振荡器与稳定的光纤链路末端时基信号牢固锁定。射电望远镜阵列 ...
即“受激辐射光放大”的意思。因此,激光实际上是原子受到入射光照射后,由于受激辐射现象,将原本的入射光放大后的产物。相比于普通光源,激光具有更好的方向性、单色性、相干性,以及更高的亮度。那么,什么是受激辐射呢?一束光,实际上就是一束光子流,由无数具有一定动量和方向的光子所组成。而光子则是由原子能级跃迁所产生,当原子由基态(低能级)向激发态(高能级)跃迁时,需要从外界吸收一个光子;而当原子由激发态向基态跃迁时,则需要向外界释放一个光子。一个光子的能量:当我们用一个入射光子掠过原子时,就有一定几率使该原子由激发态向基态跃迁,从而释放出一个光子,最终,我们将得到两个光子(入射光子和受激辐射所产生的光子 ...
器部分偏置为光放大器,从而在补偿分光损耗的同时实现高功率输出。优化组合器以提高放大效率和光束质量目前正在研究中。一旦这种技术被应用到具有宽和面增益介质的激光器上,预计将会出现一个单片、广泛可调的QCL源。7. 基于中红外QCL的 DFG的太赫兹源太赫兹光谱范围(1-10太赫兹)对于爆炸物和药物检测、安全筛查(t射线成像)、天文学和医学成像等应用非常有趣。其中许多应用程序有可能影响并维护我们的日常生活,因此,对普通公众和行业有巨大的吸引力。正如电信技术在过去30年里所证明的那样,单片集成是推动太赫兹技术接近理想来源的合乎逻辑的下一步。晶圆规模的加工允许大规模生产,高产量和低成本。为此,组件和集成 ...
FA、半导体光放大器和拉曼放大器等多种增益介质来产生多波长,EDFA是常用的方法。然而,为了在室温下实现稳定的多波长工作,必须抑制EDFA的均匀谱线展宽和模式竞争。DMD空间光调制器是可考虑实现功能的器件。图1 DMD微镜阵列中的两个微镜工作方式用DMD在c波段调谐多波长。DMD选择16个波长波段,然后耦合成独立的EDF环,因此波长之间不存在模式竞争。在DMD上的倾斜微镜衍射行为与二维闪耀光栅相似,因此可以通过控制DMD衍射效率来改变这些输出波长之间的功率分布。波长相关的可变光衰减器和光滤光器的DMD性能实验研究发现在没有附加器件的情况下,通过调整DMD反射模式,可以有效地抑制光纤环中的模式竞 ...
能将探测脉冲光放大,放大后的高功率脉冲在单模光纤中会引起光学非线性现象。概括起来,这个过程有关的非线性现象有以下几种。普通单模光纤有受激布里渊散射阈值,高功率脉冲入射下,畸变产生。四波混频过程起源于介质的束缚电子对电磁场的非线性响应。入射光脉冲与ASE噪声产生四波混频,探测器接收到的瑞利散射信号降低。然后是自相位调制和交叉相位调制,这部分是由高功率光折射率的变化,从而导致光学相位的改变。三、COTDR性能参数通常将信号功率与探测器输出的噪声功率之差定义为动态范围,动态范围可通过提升探测光功率来增加,但由于非线性效应存在,,探测光的功率提升有限。空间分辨率从设备角度上来说由光脉冲宽度决定,而从系 ...
需要能使激发光放大的光学谐振腔,如两个平面反射镜组成的F-P谐振腔(如图1中所示),其中一块反射镜几乎全反射,另一块部分反射;工作介质辐射出的光在谐振腔种来回震荡的过程中不断地使工作介质受激辐射产生更多的激发光,因此产生雪崩效应而生成较强的激光从部分反射的镜面侧辐射出去。图1:激光在F-P腔中生成示意图在FP腔中,来回反射的多光束之间可产生干涉效应,进而会对光进行滤波(如图2中所示),在某些特定的波长下产生干涉相长,如果两个反射镜间距较大,而镜面宽度比较小时,只有相对镜面入射角非常接近0°的光才能经过很多次的反射后不会移出谐振腔;从FP谐振腔输出的激光单模的谱线宽度随着两反射镜间距增大而减小; ...
(也可以使用光放大材料,如半导体或染料)。 以上述方式实现的酉矩阵的矩阵乘法原则上无功耗(ANN计算主要涉及矩阵乘积,因此,ONN架构具有极高的能效)。具体实现:构建一个两层的神经网络用于元音识别。(1) OIU使用一个由56个可编程的马赫-曾德尔干涉仪(MZI)组成的可编程纳米光子处理器(programmable nanophotonic processor, PNP)实现。每一个MZI包含在两个50%倏逝波定向耦合器之间的热-光移相器(θ),随后是另一个移相器(φ),见图2c、d。如图2a、b,激光耦合进OIU单元完成矩阵变换,随后被光电二极管阵列探测,然后被计算机读取并模拟非线性激活函数 ...
和受激发射的光放大过程开始。由于增益介质中已经储存了大量能量,谐振腔中的光强度会迅速增加。这也导致存储在介质中的能量几乎以同样快的速度耗尽。最终激光输出的持续时间短峰值能量高的巨脉冲。主动调Q中,Q开关是一个外部控制的可变衰减器。这可能是一个机械设备,例如放置在腔内的快门、斩波轮或旋转镜,或是某种调制器,例如声光设备、磁光效应设备或电光器件——普克尔盒或克尔盒。损耗的减少,通常由外部的电信号触发。因此可以从外部控制脉冲重频。调制器的另一个优点是损耗的光可以耦合出腔体并且可以用于其他用途。或者,当调制器处于其低Q状态时,外部产生的光束可以通过调制器耦合到腔中。这可用于用具有所需特性(例如横模或波 ...
或 投递简历至: hr@auniontech.com