有高性能紫外光探测的三层生物晶体Space-confined microwave synthesis of ternary-layered BiOClcrystals with high-performance ultraviolet photodetection近年来,二维(2D)三元材料因其新奇的性质而引起了广泛的关注,它可以通过调节其化学成分来实现,具有很大的自由度和可调空间。然而,二维三元材料的精确合成还面临着巨大的挑战,阻碍了其进一步的发展。在这项工作中,我们展示了一种简单而可靠的方法,通过微波辅助的空间限制过程,在短时间内(<3分钟)合成二维三层BiOCl晶体。对其紫外检测性 ...
合并,并通过光探测器测量合并后的光强。合成后的电场,类似于混频过程,会产生一个与两束激光频率差相等的拍频。双速光合并后的功率可以描述为:PPD和EPD表述在光探测器段的功率与电场。E1与E2表述两束激光各自的电场。其中,ω1与ω2表述两束激光的频率,Φ1与Φ2表述两束激光的相位. 将等式(2)与等式(3)代如等式(1),得到:其中,高频项(higher order terms)通常远超出光电探测器与测量仪器的带宽。虽然拍频信号本身包含了两束激光相位差信息,然而这个信息本身难以直接用于闭环系统的反馈信号。通常,一个单独的相位检测器会被用来获取相位差的信息,将拍频的交流信号转换成基频并输入给从激光 ...
激光功率探测—光敏二极管探测器和热敏探测器一. 光电二极管探测器光电二极管的结构通常是1个PN结,中间是本征层,也称之为耗尽层或耗尽区,入射的光子在耗尽区激发自由电子和空穴,并引导它们分别向两极运动,从而产生光电流。表征光电二极管时,我们会用到量子效率,这里其实是指内部量子效率,即产生的电子数与进入载荷子区的光子数之比,用于确定光电二极管的性能。光电二极管的响应度,对应外部量子效率,即产生的电子数与所有到达二极管表面的光子数之比,包括因表面反射或吸收而没有进入载荷子区的光子,所以一般内部量子效率高于外部量子效率。这种探测器的优势和缺点分别是:优势:响应速度快、灵敏度高、线性度好、噪声低、暗电流 ...
冲或光谱调制光探测。图案可以包括全息、空间或光谱调制的图案。这些调制的结果包括多点照明或空间/光谱调制。其他类型的调制也可能实现。LC-SLM在光学系统中放置位置的重要性。然而,随着SLMs光学吞吐量的提高,激光激发和拉曼检测损耗已经接近于在拉曼光谱仪器中使用的可接受的操作范围。相位调制空间光调制器的应用相位调制空间光调制器通常用于拉曼仪器的激发级,以各种方式对激光束进行调制。虽然可以利用现代LC-SLM调制检测到的拉曼散射,但与基于镜像的SLM设备相比,光学吞吐量通常较低,而且激光光子通常比拉曼光子更容易获得。此外,相位控制对相干单色激光的影响提供了可以利用的附加效应,如用于多路复用光束转向 ...
。对于高亮度光探测,使用较普遍的光电传感器式硅光电二极管,探测光波长范围为200~1100nm,由于硅材料成熟的制备技术,在可见光区域它的量子效率高达70%,有效面积能达到;有效面积越小,暗电流越小,响应速度越快;光电二极管的下降时间(响应时间) 与其探测带宽 关系如下:式中C和R分别为读出电路的阻抗和光电二极管的结电容,其中:式中的和分别为真空介电常数( 固定为)和相对介电常数;A为光电二极管的有效面积;d为PN结的耗尽层厚度。其中A越小,则越小(即响应速度越快);其次还可以通过缩短耗尽曾厚度来是响应速度加快。相关文献:[1].Toru.Y.(2015) “光学计量手册”,[M]:67-71 ...
个“探测”激光探测,通常与泵浦激光频率相同,使它们回到基态并产生频率高于探测激光的反斯托克斯信号(图1)。通过固定泵浦激光的波长和改变斯托克斯光束的频率,可以获得像SRS中那样的宽带测量。CARS实现了信号强度的1000倍提高,并且由于散射光是蓝移的,因此它不受自荧光的干扰。与SRS一样,信号强度的增加允许更短的采集时间,允许高达20 fps的视频速率成像。与SRS不同,CARS信号与浓度呈非线性相关,因此定量成像并不简单。第三种信号增强技术,SERS,依赖于修改样本来增强信号。在SERS中,使用金和银等金属纳米颗粒,当受到入射光的撞击时,它们的表面会产生强烈的电磁场,增强目标分子的拉曼信号。 ...
荧光寿命成像技术在微塑料识别中的应用微塑料问题已成为全qiu关注的环境问题,其在多种生态系统中的累积导致了对野生生物及人类健康的潜在风险。荧光寿命成像(FLIM)技术作为一种先jin的识别手段,在微塑料研究领域显示出巨大的应用潜力。随着塑料使用量的持续增长,微塑料的环境污染问题日益严重。传统的微塑料检测方法往往耗时且效率不高。FLIM技术提供了一种高效的解决方案,能够通过分析微塑料的荧光寿命来快速识别和分类这些污染物。FLIM技术的核心在于使用荧光寿命作为区分不同物质的依据。荧光寿命是指材料被激光激发后,发出荧光持续的时间。在FLIM设备中,一个特定波长的激光被用来激发微塑料样本。样本吸收激光 ...
扫描式荧光寿命成像技术简介一、扫描式荧光寿命成像技术的原理为了更详细地解释扫描式荧光寿命成像技术(FLIM),我们可以从其基本原理着手。FLIM是一种基于荧光寿命差异进行成像的技术,荧光寿命是指荧光分子在激发状态下保持的平均时间长度。这个时间由分子环境、化学组成以及与其他分子的相互作用等因素决定。在FLIM实验中,首先用激光激发样品,然后测量荧光分子返回基态前发射光子的时间。这个时间通常以皮秒到纳秒为单位,对于不同的荧光分子或同一种荧光分子在不同环境中,这个时间是变化的。通过分析这一时间的分布,可以得到荧光分子所处环境的信息。这些信息以颜色编码的形式在图像上显示,从而得到既包含空间分布又含有环 ...
术革新单光子光探测和测距(激光雷达)是在复杂环境中进行深度成像的关键技术。尽管zui近取得了进展,一个开放的挑战是能够隔离激光雷达信号从其他假源,包括背景光和干扰信号。本文介绍了一种基于量子纠缠光子对的LiDAR(光探测与测距)技术,该技术通过利用时空纠缠光子对及SAPD单光子相机的特性,显著提高了在复杂环境中的探测精度和抗干扰能力。该技术使用SPAD单光子相机作为探测端,并通过内置的时间相关单光子步进偏移计数技术来提高测量时间精度。光源使用了一个基于β-钡硼酸盐(BBO)晶体的非线性光学晶体来产生纠缠光子对。通过精确控制光子对的发射和接收,以及利用SPAD单光子相机高速、高灵敏的特性,zui ...
它使用红外激光探测样品,记录光频率的干涉图,并使用光谱仪进行分析以生成横截面图像。尽管超声波检查被认为是次表面成像的标准,但其速度和分辨率有限,并且需要使用耦合介质。共聚焦成像虽然能提供亚微米级分辨率,但非常昂贵且仅限于小于1毫米的深度。OCT提供了高分辨率和高速的中等成像深度。它保留了超声波将探头带到样品的灵活性,但无接触且适用于小型或精细样品。与共聚焦成像不同,OCT可由非专业人士使用,并且可以很好地与其他系统集成进行引导成像。OCT结合低相干干涉测量技术和对样品的扫描生成一系列横截面图像或3D体积图像。低相干干涉测量有几种实现方式,但目前主流方式有两种:扫频源光学相干断层扫描(SS-OC ...
或 投递简历至: hr@auniontech.com