展示全部
传感:星载冷原子干涉仪应用摘要基于MgO:PPLN波导的1560nm至780nm高效倍频技术,冷原子干涉技术通过铷原子冷却与物质波干涉,实现了对于重力加速度的精密测量。凭借由昊量光电代理的英国Covesion PPLN波导在恶劣环境下的鲁棒性,当担重力仪中的波长转换产生冷却光和拉曼光的重任。重力是地球生命熟悉的自然力量,它无时无刻不在塑造着我们的shi界——从脚下土壤的微妙变化到宇宙天体的运行轨迹。为了精确捕捉这些重力场,重力仪应运而生,专门用于测量地球或者其他天体表面的重力加速度及其微小变化。为地球科学、地质勘探、环境监测和空间科学等领域提供了重要数据。传统的重力仪基于经典物理,包括测量附着 ...
C 的双物种原子干涉仪 [5] 和新的一种同时测量重力和磁场梯度的高精度传感器 [6]。11W 780nm单次通过倍频系统ANU 的 Quantum Sensors 和 Atom Laser Group 展示了 11.4W 窄线宽激光源 [1]。 Sané 等人在单程倍频方案中使用 30W 1560nm 光纤激光器,得到了 6kHz 线宽 780nm 激光,倍频效率为 36%。这对应于 0.3%/Wcm 的效率(在低增益系统中,通常可以达到 0.6%/W/cm),晶体的最大输入强度为 500kW/cm2。该系统运行了 2200 多小时,功率没有降低。倍频输出功率如图 1 所示,插图显示了 78 ...
传感:星载冷原子干涉仪应用》,我们分享了昊量光电提供的英国Covesion MgO:PPLN波导组件应用于重力仪中的冷原子干涉仪的应用,凭借其环境鲁棒性以及优异的温控稳定性,可以稳定输出所需的波长。当然对于包括以下领域在内的诸多重要应用而言,当下亟需新一代的计时和传感解决方案:·自主导航与惯性传感(用于GPS受限环境)·重力与磁场传感(包括地球轨道环境监测和陆地场地勘查)提供这些解决方案的下一代技术利用了量子效应,其中的关键推动因素是基于铷原子的磁光阱(Rb-MOT)。磁光阱使得“冷原子”能够用作超精密原子钟以及用于测量加速度的超灵敏传感器。[1] 这些传感和计时应用要求量子技术“走出实验室” ...
或 投递简历至: hr@auniontech.com