绝对距离测量方法研究大量程、高精度的绝对距离测量方法主要分为两类:一类是相干测量,另一类是非相干测量。相干测量主要包括多波长干涉测量、线性调频干涉测量以及基于光学频率梳的测量方法。非相干测量则主要包括飞行时间法和相位测距法,飞行时间法通过测量激光信号在测量端与目标端的飞行时间来计算被测的距离,测量距离大,可以达到几十千米;相位测量法通过对激光光强进行正弦调制,然后通过测量目标端与测量端的相位差来计算被测距离,本质上是将飞行时间转化为相位差进行测量,这种方法在大距离测量的时候由于环境因素的影响会导致回光能力的迅速衰减从而引起较大的测量误差,一般最高只能达到0.1mm 的测量精度;相干测量方法利用 ...
《DMD的激光功率处理》白皮书介绍(一)从历史上看,数字微镜器件(DMD)技术的主要应用一直是在显示系统中,在过去数年中,DLP嵌入式用户正在探索许多新的应用。其中许多应用都考虑将激光器与 DMD结合使用。激光使用连续和脉冲模式操作。脉冲操作的众多优点之一是,在脉冲期间可以达到非常高的峰值功率,并且平均功耗相对较低。这种工作模式可实现各种烧蚀模式(热和非热),适用于沉积、医疗和其他应用。过去依据稳态热模型来预测DMD阵列和像素的温度,并以模型为基础形成Vialux的DMD数据手册上最大照明功率密度规格。然而在考虑脉冲激光照明条件时,DMD的像素瞬态温度不能被忽视。大温差和高温会降低DMD的半导 ...
断拓展应用场景时面临许多挑战。而在脉冲激光系统中应用时,激光功率和其造成的数字微镜升温问题尤为重要。我们需要知道其中制约关系,防止在实际使用中损坏DMD器件。前文介绍了单个DMD微镜在不同脉冲激光条件下升温降温过程,并建立描述这一过程的物理模型。接下来的内容是将单个微镜的升温过程置于微镜阵列和基底环境中,以求得在DMD使用场景下应当遵循的一般使用条件。前文模型仅预测单像素温度上升模式,为确定总像素温度,必须知道阵列温度。阵列温度取决于特定的封装。在确定的输入光能量时,阵列温度一般与封装背面的陶瓷温度有一定关系。这一关系中阵列温度与陶瓷温度差值ΔT。阵列对封装背面陶瓷的热阻、电铝热负载以及不同封 ...
题是强荧光背景,这部分归因于拉曼光谱的低截面散射。在激光激发下,荧光与Stokes Raman散射同时发生,因为红移的Stokes Raman散射与荧光发射光谱重叠。反斯托克斯拉曼散射不存在荧光问题,因为与激发波长相比,反斯托克斯拉曼散射是蓝移的,因此在光谱中与荧光自然分离。当用可见光激发时,荧光本底问题更为严重。拉曼光谱中的强荧光信号直接影响拉曼测量的准确性和灵敏度。荧光和自发拉曼信号在波长维度上重叠,因此不能用简单的滤光片分离。幸运的是,它们在以下性质上有所不同,这是许多拉曼测量中荧光抑制方法的基础:1.荧光发射寿命(纳秒量级)远长于拉曼散射寿命(皮秒量级)。这一原理产生了各种时域方法,其 ...
。为了抑制背景荧光,利用短持续时间(~ 5ps)、高重复频率(~82 MHz)的脉冲激光和时间门宽为31 ps的微通道板型光电倍增管,利用单通道门控探测器实现了单光子计数技术。用于抑制乙醇中罗丹明6G样本的荧光。拉曼信号的信噪比和拉曼荧光强度比分别为4.2和129倍时,与没有门控的情况相比有显著提高。另一种成本相对较低的拉曼系统包括一个重复频率为6.4 kHz、脉宽为900 ps的脉冲二极管激光器和一个用于时间分辨光子计数的光电倍增管。该系统表明,在浓度为10-4M的罗丹明6G掺杂纯苯样品中,使用短门宽(0.7 ns)的时间分辨光子计数比使用长门宽(25 ns)的时间分辨光子计数的信噪比提高了 ...
距决定了被摄景物与光电成像器件的距离,以及成像大小。在物距相同的情况下,焦距越长的物镜所成的像越大。2. 相对孔径成像物镜的相对孔径为物镜入瞳的直径和焦距之比。相对孔径的大小决定了物镜分辨率、像面照度和成像物镜的成像质量。3. 视场角成像物镜的视场角决定了能在光电图像传感器上成像的良好空间范围。要求成像物镜所成的景物图像要大于图像传感器的有效面积。这些参数之间相互制约,不可能同时提高,在实际应用中根据情况适当选择。还有另一部分与光电成像器件有关的参数1. 扫描速率不同的扫描方式有不同的扫描速率要求。单元光机扫描方式的扫描速率由扫描机构在水平和垂直两个方向的运动速率决定。多元光机扫描方式图像传感 ...
直放站应用场景一、光纤直放站的工作原理光纤直放站主要中继端机(或极端机,在基站机房内耦合信号)、光传输网络、远端和天线系统组成。中继端机将基站射频信号耦合下来,并将射频信号转换成光信号;光传输网络将信号传送到远端;远端机主要包括双工滤波器、低噪声放大器、功率放大器、光端机等设备,将射频信号从光信号中解调出来,并滤波、放大;用户天线用于覆盖区的信号发射和接受,可采用全向或定向天线;前向放大器放大基站至移动台的下行信号(前向信号),反向放大器放大移动台至基站的上行信号(反向信号),由于上下行信号频率相差很大即双工间隔很大,可利用双工滤波器和前端滤波器方便地将两路信号分开。图2.光纤直放站原理二、光 ...
很强的荧光背景,这进一步表明了注入过程中强有力掺杂效应。再去除外加电压之后,石墨烯表面出现了和原始样品相似的拉曼光谱。图1. 离子液体注入多层石墨烯器件的原位拉曼测试:(a)原位拉曼测试过程图解;(b)在不同偏压下表面多层石墨烯的拉曼光谱;(c)原始(黑色)、注入(红色)和非注入(蓝色)的多层石墨烯表面的拉曼光谱图如图2所示,多层石墨烯在插入偏压的薄层阻抗通过四点电阻率法来测试,石墨烯层之间弱的范德华力允许原子或小分子注入到范德华间隙中。在此种情况下,离子液体中的阳离子/阴离子在偏压下注入层中,结果石墨烯上的电荷密度显著增加并且多层石墨烯的薄膜阻抗在低于2V从11Ω显著降低到高于3.5V的4Ω ...
的潜在应用前景。关于生产商:Vertisis Technology Pte Ltd是南洋理工大学(NTU)通过NTU的创新和企业公司和新加坡APP系统服务公司的合资企业,旨在从2017年起将尖端技术商业化。Vertisis已经成功地生产了表征磁性器件及其对最终产品收率的关键影响的显微系统。其核心技术来源于南洋理工大学物理实验室发现的一项新技术——物镜上的法拉第效应还原技术,以更好地建立磁畴过程中的克尔成像。这种新开发的磁显微镜技术具有独特的系统、组件和专有软件,在自旋电子学和半导体相关行业中有广泛的应用。自推出以来,许多系统已成功安装在世界知名的大学和研究机构,在新加坡和整个亚太地区取得了优异 ...
要在多普勒背景下使原子的超精细能级结构显现出来,这即是饱和吸收光谱法。饱和吸收现象演示图利用了原子与激光共振时的一些非线性效应。如图所示光路,一束强光(红色实线,也称泵浦光)和一束弱光(黑色虚线,也称探测光)沿同一直线相反方向穿过原子气池(为了演示清楚,图中分开了一个角度),这两束光频率相同。当原子池中原子同时受到相向传播的两列光作用时,对于频率 (基态原子某一超精细跃迁共振频率)的泵浦光,可以将具有同样速度的基态原子几乎全部都激发到激发态上(或其他基态上),使吸收达到饱和。这时对于探测光,没有对于的原子来共振吸收,预期的吸收不存在,弱光束可以几乎无损的通过原子蒸气。只有速度为或者方向与光束垂 ...
或 投递简历至: hr@auniontech.com