立体结构上的色散过渡。当光波的入射角满足一定条件时,各级衍射光在介质内相互干涉,高级次衍射光互相抵消后只存在 0 级和+1级(或-1 级)衍射光的现象,即为布拉格衍射,如下图所示。若参数选择合理且超声功率满足条件,则可使布拉格衍射的衍射效率接近 100%,即入射光能量集中于+1 级(或-1级)衍射光,大大提高了能量利用率。要实现布拉格衍射,光波的入射角必须满足干涉加强的条件,该条件即布拉格方程。若衍射光之间的光程差为其波长的整倍数,即它们同相位,则满足了相干增强的条件,发生布拉格衍射。上式称为布拉格方程。根据该方程,只有当光束的入射角为布拉格角时,各衍射光在声波面上才能达到同相位,发生相干加强 ...
源具有良好的色散,上述瑞利线可以缩小到15波数。但是在光谱区域仍然存在较强的杂散光,其强度是瑞利线的100倍,掩盖了硅的拉曼信号。这些杂散光来自于激发光源,所以需要进一步净化单色激发。图2常见的带通随着入射角的增大也会出现失真和偏振分裂现象,类似于上述长通(图1a),而图3a所示的两个不同角度下的TBP滤光片,其在60°范围内具有陡峭的边缘极化不敏感性,可根据需要调整角度。图3b则是两片TBP滤光片经过精细调整入射角后的透射谱,可窄至1 nm,是可调谐激光源的优质选择。图中灰色虚线则是长通TLP的边缘截止线。图3下图4a所示中在光栅滤光后加入上述两片TBP滤光片即可得到干净的硅拉曼谱,如图4b ...
光纤中偏振模色散测量中有所应用。利用光纤的二阶横向电光效应,把单模光纤或液体芯光纤弯曲成螺旋型,放置在高压线路附近。电压会引起光纤中光波偏振态的变化。光纤在弯曲成螺旋形时,离线路越远,螺纹间距越大,高频率的振动测量,使用POTDR也是不错的选择。基于频谱分析的POTDR系统具有灵敏度高,对外界干扰反应及时、抗噪能力强,可测量频率高达5kHz的振动。在偏振模色散测量中,主要是解决双折射对高速传输的影响。由于光纤中存在双折射,脉冲光在光纤中传播时,其相互垂直的两个模式的传播常数并不相同,因而导致脉冲光展宽,产生偏振模色散(PMD)。可用POTDR技术测试现有的系统,测试PMD,替换掉PMD较大的部 ...
状和腔的整体色散。原则上,后续调制可以进一步缩短这种激光器的脉冲宽度;然而,测得的光谱宽度将相应增加。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532,我们将竭诚为您服务。 ...
计grant色散分布的量子限制估计,反之亦然。作者:Ilaria Gianani, Francesco Albarelli,...Marco Barbieri链接:https://doi.org/10.1364/OPTICA.4404385.标题:来自非对称半导体量子阱中子带间位移电流的单周期太赫兹脉冲简介:展示了一种源自电子位移电流的非对称半导体量子阱中的新型超快非线性光学响应,由飞秒中红外脉冲引起的共振子带间激发引起电子电荷的瞬态空间位移,从而引起单周期太赫兹脉冲的发射。作者:Matthias Runge, Taehee Kang, ...Thomas Elsaesser链接:https: ...
的几何像差、色散效应、相机抖动、大气扰动也都会产生模糊伪影。使用计算成像校正光学像差最有名的实例之一是哈勃望远镜,它证明了计算成像在提高成像质量上的潜力,并且对计算成像界的一些早期工作产生了激励作用。在计算成像的帮助下,光学设计者们可以使用以下的方法来补偿成像中的不完美,它们是解耦、协同和集成。4.3a 解耦解耦设计是光学设计和后端检测处理各自独立的另外一种说法。传统的光学设计旨在最小化几何和颜色像差,从而使得PSF H尽可能的接近单位矩阵。后端检测处理被用来产生一个更好的几何图像估计。在图像估计过程中,我们假设由H表示的光学系统是不变的,我们的目标是确定处理算法T,使得图像I'和物的 ...
Hall使用色散特性不同的火石玻璃和冕牌玻璃来校正色差。有些年头以后,1809年,Fraunhofer在一个巴伐利亚的玻璃熔炼车间做玻璃材料成分的实验。他不仅生产出了高质量的消色差透镜,还使用他的新兴光谱技术描述了不同玻璃的色散特性。1800年,Herschel通过用温度计测量经过棱镜后的不同颜色的光的温度,发现了红光谱以外的热辐射,即预示着胶片的发明。1801年,Ritter将氯化银暴露在不同颜色光被分开的太阳光下,检测到了蓝色以外的射线。因此,Herschel和Ritter的发现,确立了有超出人眼可见光范围之外的辐射的存在。3.3记录成像:成像科学成熟和成像应用大幅增加1837年Dague ...
、二阶和三阶色散的自相关测量的示例。干涉测量自相关方法的优势在于它们易于实现并且适用于优化大多数多光子成像应用的激发效率。然而,就其无法提取实际脉冲形状和相位而言,使得它们从根本上受到限制,因此,通常假设高斯或双曲正割 (sech) 整形函数。针对这种情况,已经开发出一系列与显微镜非常匹配的更复杂的脉冲测量技术;即频率分辨光开关 (FROG) 和用于直接电场重建的光谱相位干涉测量法 (SPIDER) ,它们能够提供额外的信息。此外,多光子脉冲内干涉相位扫描 (MIIPS)不仅可以测量脉冲,还可以对其进行整形。有许多论文详细介绍了使用执行自相关作为衡量显微镜系统双光子成像性能的效果。4.2a 干 ...
fs。4.色散在第三部分我们介绍了一种性能强大的飞秒激光器。该光源产生的短脉冲使多光子过程能够在显微镜物镜的焦点处有效激发。然而,短脉冲带来了诸多的挑战,例如色散:显微镜中玻璃的折射率与频率相关,这会产生影响色度效应,从而影响脉冲形状,降低激发效率。产生越来越短的脉冲需要越来越大的频谱带宽。例如:一个10-fs的高斯脉冲将需要大部分的可见光谱。对于正常色散,当飞秒激光脉冲穿过显微镜的玻璃·M 的重要组成部分。为了证明色散的影响,我们考虑具有高斯时间分布的“前向移动”超短脉冲,其持续时间为τ,为时间强度分布的半高全宽。时间分布写为:其中,形状因子: 对方程(3)进行傅里叶变化,得到正频谱 ...
。利用光纤的色散规律可以推导出常规的拉曼光谱。图1图1为该方法的原理图。图1显示了拉曼信号和荧光信号在取样后不久(见上图)以及在光纤中传播足够长的距离(见下图)后的频率-时间分布。在上图中所描述的情况下,当信号刚从样本发出时,拉曼峰在频域可以分离,而在时域则是混合的。在足够长的光纤中传播后,由于色散规律,不同频率的峰值在时间上被分离。相反,与瞬时和瞬态拉曼信号不同,荧光发射具有更长的寿命。通过对光纤输出信号的投影,我们可以分离不同的拉曼峰,也可以对荧光进行拉曼信号的区分。图2中在最后还可通过档位式反射镜将信号引入到光谱仪中。因此,与传统的拉曼光谱表达式(较短波长先出现)不同,PMT检测到的信号 ...
或 投递简历至: hr@auniontech.com