列校正像差的折射光学元件组成笨重的镜头,是为相机尺寸的下限。还有一个基本的障碍在于镜头焦距难以缩短,因为这会引入更大的色差。基于计算设计的超表面光学(meta-optics)是成像器小型化的可行手段之一。超薄的meta-optics使用亚波长级纳米天线(nano-antennas),以比传统的衍射光学元件(DOE)更大的设计自由度和空间带宽积来调制入射光。此外,meta-optical散射体丰富的模态特性使得其比DOE具有更多的能力,如偏振、频率、角度多路复用等。meta-optics可以使用广泛可用的集成电路代工技术制造(如深紫外光刻(DUV)),而无需基于聚合物的DOE或二元光学器件中使用 ...
改变光波导的折射率)。然而,由于大多数光电材料的热光系数相对较小,产生相位变化通常需要数十至数百微米数量级的路径长度。处理位的数据,需要个移相器,随着数据量的增加,这种方案可能会导致系统结构过大。此外,相位变化生效所需的时间相对较长,大约为数十微秒,这会限制片上(on chip)训练过程的速度(因为需要频繁地改变相位来计算梯度)。最近的一些工作旨在利用光学快速傅立叶变换 (OFFT)、环形谐振器、声光调制器和3D打印的替代架构来解决这些问题。其它基于相变材料、电吸收和电光效应的方法也可以解决其中的一些问题,但这些技术仍未成熟。当前不足:传统的光学神经网络(optical neural netw ...
刻技术加工,折射透镜用金刚石车削加工。经实验验证,实际效果与模拟效果相符。原理解析:(1) 成像模型。首先以近轴光学的方式,不考虑离轴像差,用平面波看作为一个无穷远处的点光源,其经过光学元件的相位调制后,用波动光学理论在自由空间传播到图像传感器表面得到的光强作为点扩散函数。只考虑点扩散函数为平移不变的情况,这样可以简化问题。图像源与点扩散函数卷积,在图像传感器每个像素上随波长和时间积分,加上传感器的读取噪声,zui终成像。图像重建可以看作为求解一个Tikhonov正则化zui小二乘问题。(2) 端到端优化框架。用随机梯度法优化有一个光学元件的计算相机。将成像模型的每一步描述为一个可微的模块。光 ...
经有数种基于折射的快照SI仪器,如编码孔径快照光谱成像仪(CASSI)、双编码高光谱成像仪(DCSI)、空间光谱编码压缩高光谱成像系统(SSCSI)、快照彩色压缩光谱成像仪(SCCSI)、棱镜掩模视频成像光谱仪(PMVIS)和单像素相机光谱仪(SPCS)。基于折射光学的仪器的有多种编码策略。通用的方法是采用具有不透明或透明特征的黑白编码孔径,阻挡或让光通过每个特定的空间点。因为相同的模式对所有光谱带进行编码,所以这种策略被称为空间编码,通常使用DMD(digital micromirror device)来实现它。另一种方法采用称为彩色编码孔径(CCA)的滤光器阵列实现空间和光谱编码,这需要更 ...
背景:传统的折射光学元件通常体积庞大且笨重,而对于从消费电子产品到基于无人机或卫星的遥感的各种应用,紧凑、轻便的光学元件是其所渴求的。近年来,超表面已成为波前控制的新平台。超表面(metasurface)由厚度小于或接近光波长的、亚波长间隔的电介质或金属天线阵列组成,它可以准确地调制光的相位、振幅和偏振,且外形紧凑、具有通用成像能力。目前,广泛应用超透镜(metalens)技术的主要障碍之一是其孔径尺寸。增加透镜孔径的尺寸可以产生更高的成像分辨率,这对于显微镜和长距离成像应用来说都是至关重要的。具有纳米级非周期性特征的光学超透镜通常通过诸如电子束光刻(electron-beam lithogr ...
伪影。组织中折射率的不均匀分布会导致严重的光学像差,从而降低图像分辨率和信噪比(SNR)。强光剂量会干扰正常的细胞行为和细胞器功能,导致活体成像的光子剂量有限,即信噪比低,时间分辨率也会下降。为了解决组织长时间高时空分辨率监测非常困难的问题,研究人员开发出了各种各种的技术手段。过去的十年中,亚细胞活体显微镜有了大幅的发展,例如转盘共聚焦显微镜、自适应光学(AO)、高速双光子显微镜和光片显微镜(LSM),它们与新的动物模型一起促进了神经科学、发育生物学、免疫学和癌症生物学领域的各种研究。然而,在分辨率、速度、SNR和样本健康之间存在难以躲避的矛盾,这在实时荧光成像中被称为“挫折金字塔(pyram ...
接近透明,其折射率接近2,这远大于普通玻璃材料。因此氮化硅材料适合用于设计高效超表面。氮化硅纳米柱的高度全为700nm,矩形晶格周期为500nm,半径在90到188nm之间。纳米柱的仿真使用有限差分时域(FDTD)法。选择了6个合适的半径加工,氮化硅纳米硅的透射系数和相位响应与在633nm时纳米柱半径的关系见图2B。图2C和D是加工结果的扫描电镜图像。图2、动态 SCMH 的实现。刻度条,1um实验结果:视频1、动态空间通道复用超全息图显示结果视频2、动态空间通道选择超全息图显示结果视频3、动态三维空间通带选择超全息图显示结果附录:光路,DMD为DLP6500FYE参考文献:H. Gao, Y ...
意图,其中双折射聚合物纳米柱的高度H和平面内旋转角度θ分别对透射光的幅度和相位响应进行独立控制。c、基于COMH的两个图像平面(z1和z2)上的光学可寻址全息视频显示,可以在COMH的动量空间寻址大量依赖于OAM的正交图像帧实验结果:视频1:图像平面z=z1的全息视频显示视频2:图像平面z=z2的全息视频显示附录:三维激光打印复振幅超表面全息图(1)、使用商业光刻系统(Photonic Professional GT, Nanoscribe)。在IP-L 780 resist(Nanoscribe)中,通过浸入式配置的Plan-Apochromat 63x/1.40 Oil DIC Zeiss ...
光具有不同的折射率,波长短者折射率大。 光学系统多半用白光成像,白光入射于任何形状的介质分界面时,只要入射角不为零,各种色光将因色散而有不同的传播途径,结果导致各种色光有不同的成像位置和不同的成像倍率。这种成像的色差异称为色差。通常用两种按接收器的性质而选定的单色光来描达色差。对于目视光学系统,都选为蓝色的 F光和红色的C光。色差有两种。其中描述这两种色光对轴上物点成像位置差异的色差称为位置色差或轴向色差,因不同色光成像倍率的不同而造成物体的像大小差异的色差称为倍率色差或垂轴色差。如下图,轴上点A发出一束近轴白光,经光学系统后,其中F光交光轴于 A'F,C光交光 轴于 A'C。 ...
性电光效应是折射率的变化,它与外加电场的大小成正比。1 外加电场对折射率的影响,可以通过任意偏振的光束观察到晶体中的方向,由三阶张量描述。忽略物理量的矢量性质,外部电场对晶体折射率的影响具有以下形式其中 是折射率的变化,no 是未受扰动的折射率,r 是电光张量中的适当元素,E 是施加的电场。 即使在少数具有大电光系数的晶体中,这种影响也很小。 例如,对铌酸锂晶体施加 106 V/m 的电场将产生大约 0.01% 的分数指数变化。 很少看到分数指数变化大于 1%。体调制器使用铌酸锂、LiNbO3 和 KTP 制造电光幅度和相位调制器,这两种晶体具有高电光系数和良好的光学和电学性能。这些晶体生长 ...
或 投递简历至: hr@auniontech.com