光源对相干拉曼显微镜系统性能的影响历史上,第①个相干拉曼显微镜使用了光谱可见区域的脉冲染料激光器。近来的系统已经使用了固体激光器系统,或基于电子同步钛蓝宝石激光器或同步泵浦光学参数振荡器(opo)的锁模激光器。新一代基于光纤的系统,无论是基于光子晶体光纤或有源光纤激光器中的非线性频率转换,都承诺提高易用性和更低的成本,但目前使用这些系统需要在性能上进行权衡。相干拉曼显微镜的激发需要(至少)两个激光波长,其中一个波长必须是可调的,以匹配分子振动频率的差频。此外已经证明,用几皮秒的激光脉冲宽度激发CARS和SRS可以理想地平衡高效生成非线性信号所需的高峰值功率与相对狭窄的光谱带宽(<1 nm ...
搭建相干拉曼系统时如何验证信号的真伪与自发拉曼散射相比,CRS技术可以产生更强的振动敏感信号。CRS技术在光学显微镜中的普及与这些大大提高的信号水平密切相关,这使CRS显微镜的快速扫描能力成为可能。然而,除了更强的振动信号之外,相干拉曼相互作用还提供了丰富的探测机制,用于检查各种各样的分子特性。一般来说,CRS技术比自发拉曼技术对介质的拉曼响应提供了更详细的控制。所以在实际搭建相干拉曼系统时,会有诸多问题。当第①次构建CARS或SRS显微镜时,很难确定PMT或锁相放大器探测器上观察到的信号的来源。然而,可以使用一个简短的检查表来验证信号的身份。通常情况下,应使用强谐振样品(例如,两个盖卡片之间 ...
区域反射回的相干激光光波的多普勒频率,进而确定该测点的振动速度V。基于上述光学基本理论,其测振原理如图 1 所示,由激光器发出频率为f 的激光束经分光镜入射到被测表面,由于测量表面的振动,反射光将产生多普勒频移 ,频率为f+fr的参考光束和频率为 f+反射光经反光镜反射共同投射到光电探测器上产生了拍频信号,经过电子信号处理系统,Z后得到频率为-fr拍频的电信号,由于参考光束增加的fr已知,所以,对激光多普勒测振仪的输出信号-fr进行分析和处理就可得到所需的物体振动信号。 由于光电探测器的输出信号混合了方向、频率已知的参考光束,因此能够分辨出被测表面的运动方向、运动幅度(即位移大小)以及运动频率 ...
高光强和空间相干性的泵浦源。因此,通常需要采用一个激光器来泵浦OPO,由于不能直接采用激光二极管,该系统变得相对较复杂,包好一个激光二极管,一个二极管泵浦的固态激光器和实际的OPO.图2.环形谐振腔的光参量振荡器大多数OPO都是单共振的,即谐振腔的共振波长为信号光波长或者闲散光波长,而不是对两者都共振。(对于非共振的波,谐振腔二色性反射镜或者偏振光学器件会对其产生很高的谐振腔损耗,因此具有非常小的光学反馈。)但是,也有双共振的OPO,其中信号光和闲散光都是共振的。后者只有当采用单频泵浦激光器时才有作用。双共振OPO的优势在于其泵浦功率阈值低很多。尤其在连续光工作时非常重要。但是,调谐特性比较复 ...
,从而降低其相干性。经过匀化后的光束,再经准直处理,打在双阵列匀化镜子,最终成像出较好的匀化光斑。(其光路如下图)图7:带扩散片的激光匀化光路匀化片两侧,是参数相同的聚焦透镜。激光光源,经准直入射,在第一个聚焦透镜上聚焦,而扩散片,恰落在其焦面上。经焦面上的扩散片匀化出射后的光源,再被准直,打在双阵列匀化光路上。相干性的减小,可以大大的减少接收屏面上子单元成像的小光斑之间的锐利边缘的产生。图8:微透镜匀化效果;其中左图为未加扩散片的匀化效果;右图为扩散片的匀化效果;微透镜阵列——天空才是极限!-----革命性的全自动“3D打印”光学加工技术!更低成本!更快速度!对于微透镜阵列有兴趣或者任何问题 ...
技术,是一种相干拉曼散射过程,允许使用光谱和空间信息进行化学成像[18],由于相干受激发射过程[1]能产生约103-105倍的增强拉曼信号,可以实现高达视频速率(约25帧/s)[2]的高速成像。SRS显微镜继承了自发拉曼光谱的优点, 是一种能够快速开发、label-free的成像技术,同时具有高灵敏度和化学特异性[3-6], 在许多生物医学研究的分支显示出应用潜力,包括细胞生物学、脂质代谢、微生物学、肿瘤检测、蛋白质错误折叠和制药[7-11]。特别的是,SRS在对新鲜手术组织和术中诊断的快速组织病理学方面表现出色,与传统的H&E染色几乎完全一致[12,13]。此外,SRS能够根据每个物 ...
应,可以产生相干的硬X射线,波长达0.4Å。飞秒强激光与惰性气体原子相互作用而引发的高次谐波,可获得软X波段的相干辐射,波长可覆盖十纳米至几纳米。飞秒激光在晶体中的二倍频、四倍频、六倍频效应可将近红外的飞秒激光变换至可见、紫外、极紫外和真空紫外,直至150nm,与高次谐波的软X波段相接。利用飞秒激光在晶体中的参量振荡和参量放大过程中,可以在近红外,甚至红外波段实现宽频谱范围的调谐。除此之外,利用飞秒激光在非线性介质中的传输,可以发生自相位调制,四波混频,孤子自频移和超连续等多种非线性效应,这些效应都可以使飞秒激光器输出的光脉冲从单一波长变换到紫外至红外波段。特别值得提出的是,太赫兹波这一在大分 ...
时间。因此,相干拉曼散射方法,如刺激拉曼散射效应,现在被广泛用于拉曼成像。在这个应用说明中,我们将描述Moku:Lab的锁相放大器是如何在波士顿大学的刺激拉曼成像装置中实现的。介绍拉曼光谱是一种非破坏性的分析化学技术。它直接探测样品的振动模式。与电子光谱法相比,拉曼光谱法提供了高化学特异性,而不需要荧光标签。样品可以以完全无接触和无标签的方式被询问,防止对系统的破话。红外(IR)光谱是另一种常用的获得振动光谱的方法。红外光谱和拉曼光谱的选择规则是不同的;红外光谱对偶极子的变化很敏感,而拉曼光谱对偏振性的变化很敏感。这使得红外和拉曼成为一组特定化学键的良好工具。对于成像和显微镜的应用,在选择红外 ...
。衍射极限的相干光学系统的截止频率为上式中,为频谱面的半径(mm),为傅里叶变换透镜的焦距(mm),是光波波长(mm)。所以相当于几何光学中物高,相当于几何光学中的孔径角,即信息容量W实质上等价于几何光学中的拉氏不变量。对于信息系统J表示能传递的信息量大小,对于成像系统J表示传递能量的大小。从而从光学设计的角度看,J表征了光组本身的设计、制造的难度。图2傅里叶变换透镜要求对两对物像共轭位置校正像差。当平行光照射输入面上的物体,如光栅时、发生衍射。不同方向的衍射光束经傅里叶变换透镜后,在频谱面上形成夫琅和费術射图样。为使图样清晰,各级衍射光束必须具有准确的光程。所以,傅里叶变换透镜必须使无穷远入 ...
RS是另一种相干拉曼散射(CRS)过程,其激发条件与共振CARS相同。与自发拉曼散射不同,在自发拉曼散射中,样品被一个激发场照亮,SRS中两个激发场在泵浦频率ωp和斯托克斯频率ωs处重合在样品上。如果激发束的差频Δω = ωp−ωs与焦点内分子的振动频率Ω相匹配,即分子跃迁由于分子跃迁的刺激激发,速率提高。分子居群从基态通过虚态转移到分子的振动激发态(图1A)。这与自发拉曼散射相反,自发拉曼散射从虚态到振动激发态的转变是自发的,导致信号弱得多。图1.受激拉曼散射原理(A) SRS的能量图。泵浦和斯托克斯束的共同作用通过虚态有效地将样品中的分子从基态转移到第一振动激发态。被激发的振动状态可以通过 ...
或 投递简历至: hr@auniontech.com