成像、显示、干涉测量、数据存储等领域都扮演着重要的角色。将全息与其它光学手段区分开来的是其具有记录和重建物体的强度和相位的能力。全息记录通常是物波与参考波干涉生成将物波的振幅和相位都编码的全息图。全息重建则是从记录的全息图强度恢复物的信息。全息可以分为同轴全息和离轴全息。同轴全息是指物波和参考波共轴,具有系统简单、大带宽积、稳定性强、重建时受到共轭像干扰等特点。离轴全息是指物波和参考波有夹角,使得共轭像与期望的重建像分离,从而获得清晰的重建像,但是带宽积不如同轴全息,且系统较复杂,抗干扰能力较差。电子计算机和图像传感器(CCD、CMOS)的发展将全息由模拟时代引入数字时代。图像传感器作为全息图 ...
来使用单光子干涉测量实现基于张量网络的、量子位高效的图像分类器。主要步骤图1所示。i、将分类图像的所有数据映射到量子态,使用具有N(在文章中N=784个像素(特征))个特征的基于张量网络的监督机器学习算法训练矩阵乘积态(matrix product state, MPS)分类器;ii、使用基于纠缠的优化提取少量(a handful of)重要的特征;iii、构建一个新的MPS,然后使用在步骤ii中获得的特征进行训练,训练得到保留少量特征量子位的缩小(reduced)了的MPS(保留量子特征空间中具有z大纠缠熵的少量特征量子位,在文章中是3或5个特征量子位,对应于论文所提分类器的三层或五层结构。 ...
相干光的相长干涉和相消干涉产生的,其不仅降低图像质量,对zui终用户也是一个潜在的安全隐患。散斑的缓解通常使用时间或空间的多路复用(multiplexing)来叠加独立的散斑模式。这些多路复用方法包括使用机械振动、快速扫描微镜、可变形镜以及对具有不同相位延迟的不同散斑图案进行光学平均等。然而,几乎所有的多路复用方法要么需要机械移动部件,要么需要复杂的光学系统,或两者都需要。使用部分相干光源(如LED)是一种更好的方法,因为它不需要对硬件系统做修改。LED的空间和时间不相干性直接减少了观察到的散斑,这是由于在多个不同的波传播方向(空间不相干)或光谱(时间不相干)上的多路复用的结果。然而,这引入了 ...
尺寸测量(无干涉相位模糊)、具有高光谱分辨力的高光谱三维成像等。原理解析:两个重复频率略有不同的频率梳生成器,一个为样品臂提供光束,另一个为参考臂提供光束。样品臂接收由反射型或透射型三维物体散射回的光束,作为物光。物光和参考光由分束镜合束在一个无透镜探测器矩阵上形成干涉信号。系统原理图见图1。探测器阵列记录时域的干涉图,每一个像素在记录干涉图的同时获取所有光谱元素。每一个像素的干涉图经过傅里叶变换得到复数频谱(图2b)。所有像素在经傅里叶变换后得到的每一个频率下的复数频谱一起构成全息图超立方体(hypercube),全息图的数目与梳线数一致(图2c)。在某一频率下的全息图重建使用逆菲涅耳变换在 ...
Fano 干涉的连续域内的束缚态(bound states in the continuum,BIC)可以有效地抑制量子涨落。尽管其本质上很脆弱,但这种不寻常的状态会重新分配光子,从而抑制自发辐射的影响。基于这个概念,作者通过实验证明了一种线宽比现有微型激光器小 20 多倍的微型激光器,并证明进一步减少几个数量级是可行的。这些发现为微观激光器的众多应用铺平了道路,并指出了光子学以外的新机遇。潜在用途:(1)实验证明了激光器线宽可达5.8MHz,符合40Gbits相干通讯需求。(2)可用于实现集成传感器,其线宽可识别浓度为attomolar的蛋白质/DNA,这是使用其它纳米传感器难以实现的。示 ...
学理论来计算干涉图案上的相位图。随着技术的发展,通过使用如空间光调制器(SLM)或数字微镜设备(DMD)这样的数字设备,CGH也能展示出动态全息显示的能力。然而,使用SLM或DMD的CGH长期存在着小视场、孪生像、多级衍射的问题。随着纳米加工技术的巨大发展,超材料和超表面引领全息图研究以及其它研究领域进入了工程光学2.0时代。超材料由亚波长级的人造结构(artificial structure)组成,它具有新颖的功能,超出了bulk material的局限性。三维超材料的加工非常困难,因此,超表面作为光学器件在可见光区扮演着重要的角色。超表面是一种二维超材料,由亚波长纳米结构组成,具有调制光的 ...
urnois干涉仪(GTI)反射镜(Layertec)之间反射4次实现,每次反射约1300fs。早期的KGW/KYW激光设计,使用棱镜对在腔内做色散补偿,通过改变棱镜的插入距离,可以改变输出激光的中心波长或带宽。在过去的几年里,GTI成为色散补偿的主流选择,因为它紧凑且容易装配。尽管已经有许多理论依据(通过负群延迟色散抵消增益介质里的自相位调制,产生一个可支持稳定模式锁定的色散范围)指导如何构建一个稳定的锁模腔,在构建用于特定实际应用的振荡器的时候,还是需要用到反复试错法,特别是使用离散值GTI反射镜的时候。我们需要逐渐增加负色散,直到获得稳定的锁模激光输出。作者发现,每个GTI反射两次(一个 ...
校准单元使用干涉测量的方式对通过光纤的光进行校准,此过程大约需要5分钟。校准信息得到后,可以通过将适当形状的波前耦合到光纤中产生聚焦点。每个聚焦点位置对应一个空间光调制器(SLM)上的特定图案。SLM序列显示不同的图案,实现在距多模光纤出光口15um的平面上进行聚焦点扫描(模拟激光扫描显微镜)。成像时,移除校准单元,二向色镜将后向散射回光纤的二次谐波生成信号反射进入光电倍增管进行成像。实验证明:(1)小鼠尾腱上两个区域Ⅰ和Ⅱ的线偏振二次谐波生成成像结果。(a)图从上到下分别是所有偏振角的强度和,成像平面内原纤维的方向箭袋图(quiver plot,以箭头形式表示矢量线的二维矢量图。从箭袋图中可 ...
目标位置相长干涉。WFS技术可以分为三类:基于反馈的波前整形、传输矩阵求逆、光相位共轭(optical phase conjugation, OPC)或光时间反转(optical time reversal)。前两类通过一般需要数千次测量的迭代过程来确定调制波前,这导致系统运行时间相当长。基于OPC的WFS方法通过干涉测量直接测量散射场的波前,随后生成测量波前的共轭版本作为入射波前。因此,基于OPC的WFS方法可以实现快速光学聚焦到或穿透散射介质,在涉及动态样本的应用中很有前景。尽管通过散射介质对光进行聚焦在当前引起了很多人极大的兴趣,但将光聚焦到散射介质中而不是通过散射介质要更加的有实际用途 ...
镜形成的小型干涉腔(如图1所示)。这种传感器的新颖之处在于它不会像人们预期的那样通过感应其腔镜的运动或变形来工作。相反,它通过感应腔体本身的声音传播介质的折射率的微小变化来工作。以连续波模式工作的1550nm激光二极管发出的1mW光束通过光纤发送到Fabry-Pérot标准具。腔内压力发生变化的那一刻,透射(以及反射)光强度的强度就会被相应地进行调制。因为对于许多应用来说,使用单根光纤的简单传感器设置是第1选择,所以对反射光进行监测。在普通光纤内进出传感器头的光束使用光环行器分开,从而可以监测传感器的反射光。通常介质的折射率变化是非常小的,在标准条件下(室温、环境压力),如果压力变化1Pa,空 ...
或 投递简历至: hr@auniontech.com