这几种。光纤光栅激光器在频域上可以分为单波长和多波长两类,在时域上可以分为连续和脉冲两类。传统的单波长光纤光栅激光器主要有两种:分布布拉格反射(DBR,Distributed Bragg Reflective)光纤激光器和分布式反馈(DFB,Distributed Feed Back)光纤光栅激光器。如下图所示,图为DFB光纤光栅激光器的基本结构示意图,泵浦激光器有源区和刻有光栅的稀土掺杂光纤光栅反馈区同为一体构成谐振腔。只用一个光纤光栅来实现光反馈和波长选择,频率稳定性好,同时避免了稀土掺杂光纤与光栅的溶解损耗。下图为DBR光纤光栅激光器的基本结构示意图。利用一段稀土掺杂光纤和一对相同谐振波 ...
一、光纤光栅温度传感器封装形式温度是直接影响光纤光栅中心波长变化的因素之一。实验室经常把裸光纤光栅用作温度传感器,直接在实际工程中应用。但是,裸光纤光栅本身性质限制了其直接使用范围,裸光纤的机械性能,抗蚀能力等不足以应对日益复杂的使用环境,若想改变情况需要对裸光纤光栅进行封装,封装的目的主要起到增敏与保护作用,封装后光纤光栅具有较强的机械强度与较长的使用寿命,同时通过适当的封装技术,可以提高光纤光栅的温度灵敏度。目前,光纤光栅温度传感器封装方法比较常用的有基片式、金属管式和聚合物等方式。1.1基片式封装方法基片式封装方法比较常用,在实际工程中也有应用。该封装方法是把裸光纤光栅镶嵌在衬底材料的表 ...
光纤光栅传感技术的应用概况正文:一、光纤光栅传感技术应用概况光纤光栅传感器除了具有普通光纤传感器的优点外,还有一些优于普通光纤传感器的地方,主要的优点在于其采用波长调制型光纤传感技术,其传感信号为波长编码。该信号调制机制的优点在于:测量信号适应性更强,不受光源功率、光纤连接损耗、弯曲损耗的影响;避免一般干涉型传感器中相位测量的不清晰和对固定参考点的需求,便于波长复用进行分布式测量;光纤光栅易于埋入材料中对其内部结构进行温度和应变的高分辨率、大范围测量,同时,光纤光栅也是光纤中灵巧结构器件的不二之选。随着光纤布拉格光栅制作工艺的不断提高,特别是其自动化生产平台的建立,能够制作出高性能、低成本的F ...
在光纤上刻写光栅形成光纤光栅作为谐振腔镜,因为是特定周期常数的光栅,对于要形成的激光波长相当于高反镜,而对于泵浦光来说则是完全透过的。那么用两个光纤光栅作为前后腔镜,就可以实现直接光纤输出,并且利用光纤光栅还可以做到单纵模窄线宽输出的激光。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
使用体布拉格光栅检测电池的整个表面,激发强度约为100个太阳辐射,光谱分辨率为2nm.研究的样品是CIGS基的微型太阳能电池,这些电池为圆形,直径范围为20um至150um。如上图,利用高光谱设备探究了CIGS太阳能电池的PL成像图,采集时间45min,并通过定量校准,结合广义普朗克定律获得了准费米能级分裂△μeff。为了说明横向载流子传输的影响,将高光谱成像仪和共聚焦显微成像结合(如上图)得到了PL mapping成像图,只要可以检测到发光信号,就可以确定准费米能级分裂。 从激发中间的0.91 eV下降到0.75 eV。通过电接触测得边缘处的电压为0.70eV,在空白区域中,由于PL信号过低 ...
传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。其中应用最多当属分布式光纤温度传感器与光纤光栅温度传感器。光纤温度传感器在电力系统中应用现状分析。光纤温度传感器作为一种新型的测温技术发展十分迅速,应用也越来越广泛。在电力系统中应用也得到了较好的发展,但存在以下几个方面的问题:(1)光纤温度传感器在电力系统中的一些应用尚处于初步尝试阶段,尚需要开发温度与设备运行状态等关系模型,从而更好地利用温度信息。目前在电缆检测上有缆芯温度计算模型、动态载流量模型。(2)光纤温度传感器在价格上的劣势制约了其在电力系统中的推广应用,价格太高使得在某些应用场合检测的实际意义不大。(3)光纤 ...
效应,如变频光栅效应等。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
通过引入衍射光栅等光学反馈元件,构成的外腔半导体激光器能对线宽压窄,产生高质量激光。1、可调谐外腔半导体激光器的基本模型图1 外腔半导体激光器基本结构示意图外腔半导体激光器是在原有半导体激光器的基础上,通过引入外部光学反馈元件,达到选频以及改善激光器性能的作用,简单的结构示意图如图1所示。其中半导体激光器自身的谐振腔称为内腔,而激光器的后反射面以及外腔镜所构成的谐振腔称为外腔。外腔镜将部分二极管激光器输出光反馈回内腔,反馈光束会引起激光输出强度振荡,其频率会随着腔长、激光设计以及工作条件而发生变化。正是基于二极管激光器对于光反馈敏感的这个特性,外腔起到了波长选择的作用,使得外腔半导体激光器输出 ...
柱,或者一对光栅需要被加入到光路中。同时,光谱扫描的范围本身也有限。一个关于光谱对焦的详细介绍可以在一篇Z近发表的文献中查询12。总结来说,如果成像只需要测量单个拉曼位移,则皮秒激光可以简化光路的设置。对于光谱图像的采集,飞秒激光可以极大的提高采集速度。Moku:Lab的锁相放大器可以与皮秒或者飞秒激光所配合使用。在这个应用指南中,我们将使用飞秒激光(Spectra-physics Mai Tai)配合SF57玻璃柱对光谱对焦SRS进行演示。调制,延时台,以及扫描镜泵浦光和斯托克斯光通常会使用电光调制器(EOM)或声光调制器(AOM)进行调制。调制频率通常在兆赫兹的频段。这样可以有效的降低光热 ...
光束经过反射光栅衍射,通过两个凸透镜将经过衍射的光束投射在DMD的微镜阵列上。由DMD对光束空间调制后,光束被滤光片反射到物镜,将DMD图样聚焦到样品中。实验使用绿色荧光量子点样品比较广域时间对焦和基于DMD的线扫描时间对焦技术的轴向分辨率。DMD选取不同宽度的条纹图样对比结果,条纹宽度3像素直到全部像素(全亮)。宽场时间聚焦激发(红点)和线扫描时间聚焦激发(蓝点)的z轴综合荧光强度分布图比较。DMD的尺寸为128 × 128像素,宽视场测量为“on”,行扫描模式为128 × 3像素序列为“on”。数据拟合为洛伦兹函数(实线)。上图比较两种方案在z轴上的分辨能力,线扫描照明的FWHM比宽场照明 ...
或 投递简历至: hr@auniontech.com