展示全部
当工作物质的粒子数反转达到饱和状态时,改变晶体两端电压,使出射光偏振面不发生偏转,振荡条件建立。声光调Q技术:声光晶体在超声场中对入射光产生衍射,使光线偏离出谐振腔,Q值增大而不能形成激光振荡。直到在泵浦激励下,工作物质的反转粒子数不断累积达到饱和。此时撤掉超声场,Q值降低,激光振荡条件迅速建立。激光出射,产生巨脉冲。饱和吸收体调Q:在谐振腔内插入可饱和吸收染料,染料吸收工作物质发出的荧光。开始时染料对光子的吸收率很高,系统Q值很低,自激振荡不能发生,工作物资的反转粒子数在泵浦激励下不断累积。当染料吸收的光子累计到一定程度后,染料会突然变得透明,此时Q值急剧减小,从而实现激光振荡。调Q激光器已 ...
平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用QCL Laser(量子级联激光器)多种分立波长基本原理是基于红外波段得半导体激光器,可以有DFB-QCL或者是DBR-QCLDFB Laser(分布式反馈激光器)多种分立波长将光栅级成在半导体激光器内部,光栅和激光器内部周期结构匹配进行模式筛选得一种激光器DBR Laser(分布式布拉格反射激光器)多种分立波长类似于DFB激光器,光栅位置不同,光栅位于激光器有源区之外vcselLaser(垂直腔面发射激光器)多种分立波长基于半导体层积技术得一种垂直于芯片表面发射得激光器,区别于以前半导体端面发射技术,光束质 ...
量够多,形成粒子数反转,那么就可以实现较高频率的激光发射,出现上转换发光。b 能量传递过程ETU能量传递是指通过非辐射过程将两个能量相近的激发态离子A、B耦合,其中A把能量转移给B回到基态,B接受能量而跃迁到更高的能态,从而使B能够从更高的能级发射。c 光子雪崩过程PA光子雪崩过程是激发态吸收和能量传递过程相结合发生的上转换发光。其实要发生上转换发光,发光中心的亚稳态需要较长的能级寿命,光子能在亚稳态稳定存在一段时间,因此在吸收下一个光子之前不会发生弛豫,这样相当于可以经过双光子或多光子过程使其从基态跃迁到较高的激发态,进而发光。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询400 ...
的能级间形成粒子数反转,在加入适当的正反馈回路构成谐振腔之后就可以产生激光震荡。光纤激光器谐振腔的构成一般会有这么几种,第一种是常见的用F-P腔,即法布里-珀罗腔,如下图所示第二种是用激光在光纤上刻写光栅形成光纤光栅作为谐振腔镜,因为是特定周期常数的光栅,对于要形成的激光波长相当于高反镜,而对于泵浦光来说则是完全透过的。那么用两个光纤光栅作为前后腔镜,就可以实现直接光纤输出,并且利用光纤光栅还可以做到单纵模窄线宽输出的激光。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
益光纤中形成粒子数反转产生受激发射光。远离泵浦端的光纤光栅FBG2一方面承担对腔内信号激光反馈作用,另一方面腔内信号激光必须从该光纤光栅耦合输出。经过FBG1和FBG2共同构成的谐振腔对激光进行选频,得到所需波长的激光输出。根据光纤光栅的耦合模理论光纤光栅的反射率表示为其中L为光栅长度,k为耦合系数光纤光栅激光器具有很多优点,尤其是跟常见的外腔半导体激光器比起来,光纤光栅在外腔结构中不仅起到反射的作用,而且还有选频的作用,激光器的工作波长由光纤光栅的布拉格波长决定。在制作光纤光栅时很容易控制精度,并且适用于几乎所有光源,这是其他种类的激光器不能比的。工作线宽非常窄,可以到几百KHZ,甚至可以低 ...
数目,即实现粒子数反转。为了实现粒子数反转,通常需要使用泵浦和特定的工作物质。泵浦是一种使用光将原子从基态升高到激发态(通常是亚稳态)的过程。泵浦的光源应当满足两个基本条件:1.有很高的发光功率2.作为泵浦源的辐射光的光谱特性应与激光工作物质的吸收光谱相匹配。以红宝石激光器为例,其激励光源是螺旋形脉冲氙灯,工作物质是红宝石棒。氙灯在绿色和蓝色光谱段有较强光输出,正好能与红宝石的吸收光谱对应起来,最终使红宝石棒产生大量激发态(亚稳态)的原子,实现粒子数反转。而作为工作物质的红宝石则需要制作成圆柱形棒状体,两个端面平行并镀银,使之一端成为100%的全反射面,另一端成为90%的部分反射面(可看做光学 ...
个子带之间的粒子数反转,从而实现激光发射。由于系统中能级的位置主要由层厚度而不是材料决定,因此在同一材料系统中可以在很大范围内调节QCL的发射波长。此外,在半导体激光二极管中,电子和空穴在穿过带隙重新组合后湮灭,不能再发挥光子产生的作用。然而,在单极QCL中,一旦电子经历了子带间跃迁并在超晶格的一个周期内发射光子,它可以通过隧道进入结构的下一个阶段,在那里可以发射另一个光子。当一个电子穿过QCL结构时,它会导致多个光子的发射,这一过程产生了级联,并使量子效率大于单位成为可能,从而产生比半导体激光二极管输出更高的功率。D1个QCL是在GaInAs/AlInAs材料系统中制作的,晶格匹配于InP衬 ...
条件是能产生粒子数反转,反转后的粒子经过谐振腔,由激发态跃迁回基态,释放能量,形成稳定的激光输出,但工作介质中的原子受到激励源激发后使处在高能级的原子数数目必须大于低能级上的原子数数目,这样增益大于损耗,才能使光的在谐振腔中不断得到增强产生较强的激光。因此合适的激光工作介质和激励源是激光器必不可少的组成部分。不同的工作物质的激发光源波段各异,如今的激光工作介质有固液气和半导体在内的几千种,并涵盖了从真空紫外到远红外的波段,按波段划分的激光器种类大致如下表:激光器波段(λ)常用工作介质远红外激光器25~1000μm自由电子激光器中红外激光器2.5~25μmCO分子气体激光器(5~6μm)近红外激 ...
中。这会产生粒子数反转,但由于没有来自谐振器的反馈,激光不会发出。由于受激辐射的速率取决于进入工作物质的光子量,因此增益介质中存储的能量会随着持续泵浦而增加。由于自发辐射和其他过程的损失,经过一定时间,储存的能量会达到某个最大值;此时称为增益饱和。此时,Q开关器件迅速从低Q变为高Q,从而允许反馈和受激发射的光放大过程开始。由于增益介质中已经储存了大量能量,谐振腔中的光强度会迅速增加。这也导致存储在介质中的能量几乎以同样快的速度耗尽。最终激光输出的持续时间短峰值能量高的巨脉冲。主动调Q中,Q开关是一个外部控制的可变衰减器。这可能是一个机械设备,例如放置在腔内的快门、斩波轮或旋转镜,或是某种调制器 ...
持一个优势的粒子数反转来产生受激辐射。为了聚集原子来放大一个入射辐射,必须打破原子的动力平衡态以产生粒子数反转。当外界能量(泵浦能量)提供给处于一个特定激发态的原子系统时,这种情况的发生是有可能的。一个非平衡的环境一般不能由增加系统温度来实现和维持。因此,光放大的第二个条件是持续的泵浦能量来产生和维持优势的粒子数反转来,从而产生受激辐射。大多数的激光材料只有很低的增益,为了产生一个很大的放大,光必须经过一个很长的激光介质,这个过程可以通过在两个镜子之间放置一个增益介质来实现,镜子来回反射光线通过增益介质。增益介质和两个镜子组成激光谐振腔。影响激光的主要因素是增益介质、泵浦,以及激光腔或者谐振。 ...
或 投递简历至: hr@auniontech.com