放大过程中,光脉冲能量超过元件的损伤阈值而损伤元件,同时又可以有效地从增益介质中抽取能量,先将脉冲经过展宽器展宽后再进入放大器中放大,从放大器中出来的脉冲再经过压缩器压缩,这样就可以得到短脉冲、高功率的飞秒脉冲。根据啁啾脉冲放大原理,飞秒强激光脉冲系统主要由四部分组成:超短脉冲振荡器、脉冲展宽器、脉冲放大器以及脉冲压缩器。飞秒脉冲系统的关键技术就是色散补偿问题,即脉冲展宽器与 脉冲压缩器的合理设计的问题。下面就简单介绍一下飞秒激光系统中的脉冲展宽器和脉冲压缩器:(1) 脉冲展宽器设计原理:脉冲进入脉冲展宽器,经过脉冲展宽器的光栅(CBG)衍射后,脉冲中不同频率的光因衍射角不同而分散开,而衍射元 ...
率3.3W激光脉冲。随后脉冲被送入约30cm长ND-HNLF,根据FROG测量结果,其脉冲宽度小于70fs,平均功率1.8 W,峰值功率约为13kW。然后连接~ 30厘米长HNLF产生倍频程频谱,波长覆盖从970~2200nm。用PPLN晶体对2000nm波段进行倍频后与1000nm基频光一同输入共线f-to-2f干涉仪,生成一个信噪比大于30dB、分辨率~300 kHz f0信号。图1:载波包络零频f0与fbeat探测;插图:倍频程光谱~970-2200nm图2a显示对fbeat进行测量的实验结果,可以得到自由运转下fbeat相位噪声为22.4 rad (100Hz~10MHz,时间抖动18 ...
单光子和及激光脉冲的开始-停止对,并以此方式确定单光子在激光脉冲序列中的时间位置。然后,可以根据这些数据,建立通常的TCSPC/FLIM光子分布。TCSPC技术所基于的原理是:在记录低强度、高重复频率的脉冲信号时,由于光强很低,以至于在一个信号周期内探测到一个光子的概率远远小于1。因此,没有必要考虑在一个信号周期内探测到几个光子的情形。只要记录这些光子,测量它们在信号周期内的时间,并建立光子时间分布的直方图就足够了。TCSPC技术的基本原理如图所示。探测器的输出信号是对应于探测到单个光子的随机分布的脉冲序列。一般情况下,一个信号周期内探测到多于一个光子的几率是很小的,有些信号周期会探测到一个光 ...
种用于超短激光脉冲的通用测量方法,测量脉冲的时间尺寸可从数fs指十数ps,同时可给出脉冲的相位信息。FROG作为解决超短脉冲测量技术,由Rick Trebino 和 Dan Kane (Mesa-FROG的创始人)于上世纪90年代提出,其主要思想是通过测量激光脉冲的“自谱图”,即通过二维相位检索算法从测得的光谱图(FROG轨迹)中获取脉冲信息。Dr.Kane 开发优化的CGP(Principal Component Generalized Projections)算法效果由其突出,可以实现实时测量(>2Hz)。中红外FROG超短脉冲测量仪,能够覆盖传统超短脉冲给测量仪无法覆盖的2000- ...
值,Δt为激光脉冲宽度,D为接收孔径,分别为反射/接收光学效率,p为目标物反射率。下图为单光子探测器不同条件下的暗计数对信噪比(SNR)的影响,横轴为脉冲积累次数, 纵轴为信噪比,可知,回波率较高时(近距离),探测器暗计数对SNR的影响可以忽略;回波率较低时(远距离),较大的暗计数会淹没信号,无法进行测距。暗计数(噪声)是指除了信号光以外,其他误触发引起的计数,包括环境杂散光、电噪声等。环境杂散光可以通过前置滤波片等方法进行人为消除,电噪声这种设备自身的噪声,无法进行人为消除,只能依赖探测器本身性能。因此探测器自身的暗计数以及探测效率直接性的影响了是否能够探测到并有效接收Z终光响应脉冲的光子且 ...
MHz 的激光脉冲序列:斯托克斯光束在 1030 nm,泵浦光束在 790 nm。激光输出也用于同步调制:80 MHz 参考被发送到分频器以生成 20 MHz TTL 输出。这些 20 MHz 输出被使用两次:一次作为电光调制器调制斯托克斯光束的驱动频率,另一次作为外部锁相环的 LIA 输入通道 2(B 中)的参考。泵浦光束由硅光电二极管检测,然后被发送到 LIA 的输入通道 1(In A)。来自输出通道 1(Out A)的信号被发送到数据采集卡以进行图像采集。来自输出通道 2 (Out B) 的信号被最小化(通过调整相移)。2.1 单通道锁相放大器配置图 2:典型的锁定放大器配置设置图 2 ...
的简介飞秒激光脉冲的持续时间10-15s,即飞秒(Femtosecond——fs),它相当于电子缠绕原子核半周的时间,以光速计算,在1fs的时间内,光传播了0.3um,可见飞秒这一单位的时间之微。这样微小的时间在我们所看到的宏观s界里是无法找到它的踪迹的。但是,在由基本粒子所组成的微观s界里,其运动状态的改变常常发生在飞秒这样较短的时刻,如分子的能量转移、化学键的破裂和形成、原子的横向弛豫和纵向弛豫,半导体中载流子的激发和复合等。正是由于这个缘故,在飞秒激光诞生后的相当长的一段时间内,飞秒激光主要是用来研究物理、化学领域微观过程超快现象的一个技术,从而在物理、化学和生物领域完成了大量的超快过程 ...
两个超快的激光脉冲在样品上重叠,包括空间和时间上的重叠。为了获得稳定的时间重叠,今天的SRS显微镜通常使用一个Ti:Sapphire激光器来产生泵浦和斯托克斯光束。皮秒和飞秒激光器都可用于SRS测量。皮秒激光器提供更精细的光谱轮廓。不需要额外的光学器件就可以实现高光谱分辨率。与自发拉曼不同的是,所有的拉曼位移都可以用单色激光器同时测量,而刺激拉曼需要调谐波长来测量更多的光谱点,而且在获取光谱图像时,调谐激光波长会限制测量的速率。另一方面,飞秒激光器本身具有宽广的光谱。一种叫做 "光谱聚焦 "的技术可以用来快速调整泵浦和斯托克斯光束之间的能量差。可以在更短的时间内获得光谱图像 ...
)分别为压缩光脉冲的展宽谱和干扰自相关迹。然后,放大的脉冲序列直接光纤耦合到一个1550px高度非线性锗硅酸盐光纤[41]。保持偏振的高度非线性光纤(HNLF)在放大波长上提供了反常色散,从而通过孤子裂变产生了一个倍频跨越的光谱。图2(e)显示了保持偏振的HNLF输出光谱,其范围为1000 ~ 2250 nm。由于保持偏振的HNLF相对较长,该结构具有一个倍频跨越谱。然而,我们仍然获得稳定的脉冲能量和光谱形状只使用PMF成分。倍频跨越频谱耦合到一个f-to-2f干涉仪,以稳定频率梳和特征的偏移频率梳子。当周期极化铌酸锂晶体长度为1 mm,极化周期为31.30 ~ 32.81μm时,输出光谱的红 ...
偏移。而探测光脉冲相对于泵浦脉冲具有固定的延迟时间,而且该延迟时间是由机械平移台控制,通过改变光程来控制泵浦脉冲和探测脉冲间的延迟时间,由于热反射效应导致照射至其上的探测光脉冲受温度偏移的影响(如图2中所示),其中包含样品的热物性信息。图2:横轴为时间轴其中(a)经过调制器调整后的泵浦脉冲;(b)为样品收到泵浦影响的表面温度变化;(c)探测光脉冲,与泵浦光脉冲之间有一延迟;(d)由样品反射的探测光的信号[2]此外针对于测量面内热导率的空间域热反射率(SDTR)可以测量1到2000 W/(m·K)范围内小尺度横向各向异性的热导率张量。与其他的泵浦探针技术相比,这种新的SDTR方法不需要表征各种非 ...
或 投递简历至: hr@auniontech.com