展示全部
高性价比1550nm飞秒激光种子源
1030nm短脉宽飞秒激光器(<50fs)
1560nm脉宽、重频、单脉冲能量可调光纤飞秒激光器
1040nm高功率飞秒激光器(5-20W)
780、925、1030、1064、1550nm模块式皮秒/飞秒激光器
780nm高功率飞秒激光器(up to 1W)
760-840nm二极管泵浦钛宝石飞秒激光器
1040nm@750-1300nm双输出飞秒激光器
750-860nm超短脉宽钛宝石飞秒激光器(<12fs)
920nm, 4W飞秒激光器(双光子)(全新样机免费试用)
525/800/1050nm三波长飞秒激光器
725-970nm短脉宽钛宝石飞秒激光器(<50fs)
2800nm/2.8um飞秒光纤激光器
1560/780nm双波长飞秒激光器
脉宽可调皮秒激光种子源(100ps-1us,ELI-BEAMLINES种子源!)
715-990nm高功率钛宝石飞秒激光器(>3W)
GHz重频飞秒激光器,是市面上唯一一款1550 nm,具有GHz重复频率和超低噪声性能的工作级飞秒激光器/光频梳。MENHIR-1550 飞秒激光器一个重要用途是为计时分配系统(或时间信号分发系统,时间分配和同步系统,timing distribution systems)提供极低位相噪声的高稳定光源。 高精度计时分配系统(TDS)采用锁模激光器(也就是光学主控振荡器)产生的超低噪声脉冲序列作为定时信号。光学主控振荡器的定时信号通过光纤定时链路从中心位置传输到多个终端站,这些终端站的传输延迟由平衡的光学交叉相关器稳定。高稳定性的计时分配系统对于各种大科学装置(如粒子加速器,同步辐射光源S ...
交钥匙型锁模飞秒激光器,演示了对其载波包络偏置零频(f0)的检测和稳定,以及利用连续激光器对梳齿的光学稳定,展示了这种激光器在频率测量和光谱学方面的应用前景。2.实验设置与结果激光器平均功率大于50mW,提供以1560nm为中心的类孤子光谱,>12 nm的光谱带宽支持205fs脉冲宽度。重复频率由一个带宽为70kHz的快速压电致动器(PZT)控制,泵浦源调制带宽>100 kHz。激光器输出光束被分成两路,一路与1550nm赫兹量级线宽连续激光器拍频,得到激光器某一个梳齿的相位噪声信息;另一路用于载波包络相位零频探测,首先通过一个色散补偿光纤(PM-DCF),然后通过两级功率放大和光 ...
双光子显微成像用飞秒激光器双光子激发荧光(TPEF)显微镜,也称为双光子显微镜,是对活体组织深层三维成像的第1方法。深度成像是TPEF显微镜固有的优势,它使用了更长的激发波长(通常是近红外波段),因而其带来的散射比传统共聚焦显微镜中所使用的较短的可见波长更少。更长的波长同时也减少了来自散射光的背景照明,并增加了在更高深度处的对比度。目前,用TPEF显微镜可以获得1mm深度的体内大脑图像。在荧光显微镜中,当两个独立的光子被一种介质同时吸收时,就会发生双光子激发。这需要两个合适能量的光子在这样的介质上时间和空间上同时重合;通常来说这不需要非常大的激发光子通量,当然光子通量越大, 双光子同时被吸收的 ...
逐渐被单波长飞秒激光器+声光调制器方案所替代。 图一:左:Chameleon系列钛宝石飞秒激光器和Conoptics电光调制器;右:ALCOR XSight 920nm光纤飞秒激光器,集成声光调制器用于全功率调制,激光头尺寸387*151*91mm3, <7kg。 法国SPARK LASERS公司于2017年推出“ALCOR”系列飞秒光纤激光器,功率最高可达2W@100fs脉冲宽度,已陆续在国内交货使用,收到客户一直好评。 一键式操作、直观用户界面、高功率稳定性、无需维护校准是其相对钛宝石激光器最大的特点。图二:ACLOR 920nm光纤飞秒激光器,平均功 ...
是对于可调谐飞秒激光器)输出一阶角与波长成正比。如果入射光束的线宽由于超短脉冲而变宽,则会导致输出一阶角的展宽。另一方面,AOM本身的透过率曲线及镀膜曲线也会影响波长适用范围。色散(特别是对于脉宽<<100fs的宽带脉冲)介质性质决定了在不同波长下光速是不同的,输入的光谱越宽,脉冲的色散效应越高。这种效应在高折射率晶体中更为敏感,比如Teo2比熔石英更为明显。有效通光孔径的大小为了获得最好的效果,激光束需要和有效孔径匹配,有效孔径与脉冲上升下降时间有关,这与声光效应的原理有光。外部尺寸/散热由于脉冲选择器/Pulse Picker的占空比通常很低(<< 1%ON),因此 ...
百万的皮秒和飞秒激光器,所以在工业加工领域亚纳秒激光器是一个非常好的选择。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
光束。皮秒和飞秒激光器均可用于SRS测量。皮秒激光器提供了更精细的光谱轮廓。无需额外的光学器件即可实现高光谱分辨率。与自发拉曼光谱不同,自发拉曼光谱可以用单色激光同时测量所有拉曼光谱,而受激拉曼光谱则需要进行波长调整以测量其他光谱点,并且在获取光谱图像时调整激光波长会限制测量速率。另一方面,飞秒激光器本身具有广谱。可以使用一种称为“光谱聚焦”的技术来快速调整泵和斯托克斯束之间的能量差。可以在更短的时间内获取光谱图像。但是,这种方法增加了系统的光学复杂性。需要在光束路径中添加一对衍射光栅或高折射率材料(例如SF57玻璃棒),让光谱范围受到限制。有关频谱聚焦方法的详细说明可以在最近的出版物中找到。 ...
教授通过对飞秒激光器载波包络相移频率及重复频率的锁定研制成功的光学频率梳及其在光学频率测量方面的应用分享了2005 年的一半的诺贝尔物理学奖。飞秒锁模激光器通过锁定飞秒激光器内所有能够振荡的激光器纵模相位而形成周期性脉冲。这些相互独立的纵模利用锁模技术建立时间上的同步关系,并且各个纵模之间的相位关系是固定的。随着飞秒激光技术与激光测量技术的不断发展与创新,长度测量的精度和范围也在不断地提高。十数年来,有很多文章报道利用飞秒激光实现了微米甚至纳米级精度的距离测量。2000 年,日本计量院的K.M.等人首次利用飞秒激光进行绝对距离测。过测量飞秒脉冲序列中的重复频率以及它的高次谐波的相位的变化,在 ...
米打印中使用飞秒激光器获得有效的双光子吸收仍有许多缺陷。首先,当从足够多的聚合物交联点向上增加激光功率时,由于三光子和四光子吸收过程以及更甚的开始,会发生微爆炸,从而导致多余的高能电子态。通常,发生微爆炸的激光功率比写入点高一个数量级以下。即使在写入点,光刻胶中的小污染物或污垢微粒也会引发微爆炸。此类事件使整个耗时的3D打印作业变得毫无用处。其次,所需的飞秒激光振荡器仍需花费数万欧元。第三,飞秒激光器及其配件占整个仪器的相当大的体积部分。迄今为止,这种成本和尺寸的结合阻止了3D激光纳米打印机的广泛应用。技术要点:基于此,德国卡尔斯鲁厄理工学院的Vincent Hahn(一作兼通讯)等人提出一种 ...
种性能强大的飞秒激光器。该光源产生的短脉冲使多光子过程能够在显微镜物镜的焦点处有效激发。然而,短脉冲带来了诸多的挑战,例如色散:显微镜中玻璃的折射率与频率相关,这会产生影响色度效应,从而影响脉冲形状,降低激发效率。产生越来越短的脉冲需要越来越大的频谱带宽。例如:一个10-fs的高斯脉冲将需要大部分的可见光谱。对于正常色散,当飞秒激光脉冲穿过显微镜的玻璃·M 的重要组成部分。为了证明色散的影响,我们考虑具有高斯时间分布的“前向移动”超短脉冲,其持续时间为τ,为时间强度分布的半高全宽。时间分布写为:其中,形状因子: 对方程(3)进行傅里叶变化,得到正频谱: 方程 (5) 经系统传播,通过 ...
或 投递简历至: hr@auniontech.com