

Fibers for Raman Amplifiers

The IXF-PDF & IXF-PDF-PM fiber series are Phosphorous P-Doped fiber especially designed to achieve very high Raman gain at 1.48 micron for high-power pumping of Erbium doped fibers. P-Doped Fiber offers a Raman shifted gain that is three times higher than the germanium-doped fibers.

The main application is to produce high-power sources at 1240 and 1480 nm that can be used as pump lasers in O-vnd and C-band fiber amplifiers respectively. Indeed, laser diodes are limited to ~200mW of optical output power while Raman lasers can generate 1W. (For 1310 nm Raman fiber amplifiers, the Raman Fiber features very low loss, as it's a good alternative to the 1480 nm laser diode sources that are limited to 100 to 200 mW output power compared to the 1 watt Raman laser alternative.)

Key Features

- Raman Gain Efficiency (typical):2.5 (W·km)-1
- · High P2O5 concentration
- · Low Attenuation
- Good splicing losses and low macrobending losses

Applications

- · Raman Laser
- · Raman Amplifier

Related Products

- · Polarization Maintaining Fibers
- · Spun Fibers

Main Specifications

	Product Name	Core NA	Coating diameter (µm)	MFD	@ 1060 nm	@ 1240 nm	Attenuation @ 1480 nm (dB/km)	@ 1550 nm	Cutoff Wavelength (nm)	Birefringence
	IXF-PDF-5-125	0.17 +/- 0.01	245 +/- 15	7.5 +/- 1	< 2.4	< 1.5	< 1.4	< 1.7	1025 +/- 75	NA
	IXF-PDF-5-125-PM	0.17 +/- 0.01	245 +/- 15	7.5 +/- 1	< 3	< 2	< 1.8	< 2.5	1025 +/- 75	> 1.10-4

Common specifications

- · Bare fiber diameter: 125 +/- 1 µm
- · Core to cladding concentricity: < 1 µm
- · Proof test level: 100 kpsi

yuanshou-bu@auniontech.com

Tel: 18621128645(微信同号)

联系人: 步工