

aMSM UV/VIS SENS

A. <u>Microspectrometer Module</u>

The Microspectrometer is based on a hollow cavity waveguide design which has no moving parts. It is attached to a photodiode detector array. The light is coupled into the spectrometer through a $300/330\mu m$ silica fiber and entrance slit. The light is guided by total reflection inside the spectrometer cavity.

The spectrometer itself is a micro-molded monolithical device which includes the entrance slit, a focusing flat field echelette grating and the camera mirror. These elements are arranged in the Rowland design.

The microstructures are replicated with optical surface quality using the LIGA technology.

The monolithic Rowland design guarantees superior mechanical, thermal and optical stability. There is virtually no thermal drift of the wavelength calibration due to the fixed geometrical position of the optical components.

The wavelength to pixel calibration function is stable over the lifetime of the product and will not require any recalibration.

The low weight and the monolithic design make it insensitive to mechanical as well as vibrational stress. The fabrication processes and the use of selected materials ensure excellent resistance against thermal stress and demanding environmental conditions.

The UV/VIS Microspectrometer uses the Hamamatsu S13014-10 silicon-photodiode array.

These features make the Microspectrometer an ideal choice for the incorporation into spectral sensing devices for applications involving harsh environmental conditions. Handheld battery driven devices as well as in-line process sensors utilize the Microspectrometer. Typical applications range from instrumental analysis, biological and clinical systems to colorimeters, food inspection systems and fluorescence measuring devices.

Our Injection Micro-molding technology guarantees excellent inter instrument agreement as well as a very attractive pricing, especially in OEM volumes.

B. Dimensions of aMSM UV/VIS SENS spectrometer

C. <u>Technical Data</u>

Spectral Range	350-850 nm (280-1050 nm accessible)			
Fiber	$\emptyset 300/330 \mu m NA = 0.22$			
Straylight Attenuation	>18dB with GG495 at 470nm (30 dB using SC30)			
Spectral Resolution	8 nm _{FWHM} (Sp. Disp. 1.96 nm/pixel			
Spectral Accuracy	2 nm			
Dynamic Range	>5000			
Inter Instrument Agreement	Typically, 0.5 nm			
Wavelength Stability	0.05 nm/K			
Sensitivity @650nm	>19E10 ¹⁵ cts*nm/Ws			
Dark Noise	< 10cts (16-bit ADC)			
Detector array	S-CMOS; 512 pixels (14µm pixel width)			
Electronics	16 bits; connector: USB			
	Alternatively, 8 pol. Extension port (5V ext. pwr.; UART;			
	Trig.; Reset)			

Fiber connector	SMA 905, IS-02 (customizable on demand)
Dimension (w/o PCB)	Length: 60 mm; width: 35.3 mm; height: 8.3 mm
Operating temperature	0 °C to +40° C
Storage temperature	-40°C to +60° C

D. <u>Communication interfaces</u>

- USB
- UART (The protocol settings are 8N1 (1 start-bit, 8 bit, no parity, 1 stop-bit) and no handshake). Default baud rate is 115200.
- For more details about communication interfaces, please refer our hardware description for SDCM4.

UART user signals

Pin	Name	Signal	Value	Min	Тур	Max	Unit
			Voltage	4	5	5.25	V
1	V_{ext}	Power-IN	Current	40 (Sleep mode)	100-150	1200	mA
2	TDIC	Innut	High	2.2		5.5	V
2	IRIG	Input	Low	0		0.5	V
		I/O	High	2.2		3.6	V
3	GPIO6/Temp		Low	-0.3		0.5	
			Current			15	mA
4		Input	High	2.2		3.6	
4	UIKA		Low	-0.3		0.5	V
		Output	High	2.2		3.3	
5	U1TX		Low	0		0.5	
			Current			10	mA
	MDEC#	Innut	High	2.2		5.5	
0	MIKES#	Input	Low	0		0.5	V
		I/O	High	2.2		3.6	V
7 GP	GPI00		Low	-0.3		0.5	
			Current			15	mA
8	GND	GND					
9	GND	GND					
	SHUT/LAMP		High	2.2		3.3	
10			Low	0		0.5	
			Current			15	mA
			High	2.2		3.6	V
11	GPIO7		Low	-0.3		0.5	V
			Current			10	mA
12	VPower		Voltage	4	5	5.3	V

		Power out	Current			300	mA
13	AN0	Analog-	ADC- Range	0		3.3	V
		IIN	Max. V	-0.3		3.6	V
14	2 217	Power	Voltage	3.1	3.3	3.4	V
14	3.3V	out	Current			100	mA

Signal Description

Pin	Name	Description
1	V _{ext}	External 5 V power supply input. Voltage between 4.2 V and 5.1 V is allowed with a max current of 1200 mA.
2	Trig	Trigger input with programmable active slope and internal pull up.
		Should be debounced. Please refer to "Specfirm Firmware Operation
		Instructions" for more information about available trigger settings.
3	GPI06/Temp	User programmable general-purpose-input-output-pin. In standard
		together with onboard 10k NTC sensor.
4	U1RX	LV-TTL (3.3 V) UART serial communication input signal RXD.
		communication protocol is start bit, 8 bit data, no parity, 1 stop bit (8N1),
		no handshake. The standard baud rate is 115200 and can be set by the
		baud rate parameter.
5	U1TX	LV-TTL (3.3 V) UART serial communication output signal TXD.
		Communication protocol is start bit, 8 bit data, no parity, 1 stop bit (8N1),
		no nandsnake. The standard baud rate is 115200 and can be set by the
6	MRFS#	Master Reset input active low internally nulled up to 3.3 V via 10 k0
0	MILLOW	resistor. This pin can be used to perform a MCU-restart. Leave
		unconnected, if not used.
7	GPIO0	User programmable general-purpose-input-output-pin.
8	GND	
9	GND	
10	SHUT/LAMP	LV-TTL shutter/lamp output. Can be used to control external light source
		or shutter. This signals polarity is programmable by the lamppol
		parameter $(0/1)$. It will be active before integration time of the line array
		begins until its end. The scan delay parameter can be used to define the
		amount of additional time to realize shutter operation or lamp
		stabilization before integration begins in light- or dark-scans. In case of
		lamp hurst mode (several
		flashes in programmable intervals and pulse length) can be also controlled
		by this signal.
11	GPI07	User programmable general-purpose-input-output-pin.
12	VPower	Current limited 5V Power Output. The voltage on that pin depends directly
		on the active power supply (USB or external) and should not be used as
		reference voltage.

13	AN0	General purpose analogous input pin for sensing applications.
14	3.3V	Regulated 3.3 V output, internally used for MCU and other digital circuits.

E. <u>Power supply</u>

Power Supply via USB or 5 V external.

Maximum power consumption: 4.7-5.25V, 400mA.

