

TIMA 5

Thermal Interface Material Analyzer

The first convenient automated all-in-one ASTM D 5470 test system.

Model 5

Simple yet versatile

TIMA is a comprehensive laboratory and industrial measurement tool providing a wide range of thermal measurements and analyses to be performed with highest scientific standard.

Greases and pastes

b

Cured gap fillers and adhesives

Anisotropic composites

Phase change materials

- s Effective thermal conductivity
 - Thermal interface resistance

Overall thermal resistance

- Bulk thermal conductivity
- Curing parameters study
- Boundary conditions study
- In-situ reliability investigation
- Extreme conditions testing

ASTM D 5470 Standard Conforming and Beyond

TIMA 5 fully meets the established test methodology described in ASTM Standard D 5470-17, while also providing fully automated characterization and many additional features not described in the ASTM Standard.

 Full coverage of specification range

Fully automated

measurement

 Up to 150°C sample temperature

▶ ± 300 N clamping

and tensile force

- Scientific standard accuracy estimation
- Highly user-friendly, robust, and reliable

01

02

0.3

Compression [MPa]

0.4

Ageing and Reliability Investigations

- In-situ monitoring of aging / degradation
- Highly accelerated:
 500 cycles per day

TIMA allows accelerated lifetime testing for thermal interface materials exposed to thermomechanical stress by emulating mechanical strain from in-field application.

0.0

- Application-related testing conditions
- Thickness- and pressurecontrolled cycling

TIMA 5-21

Description

TIMA is a fully ASTM D 5470 compliant measurement system for thermal characterization of thermal interface material and other material with low to mid-ranged thermal conductivity.

Technical Specification

System

2					
System type	Benchtop material characterization system				
Footprint (w × d)	35 × 40	cm ²			
Height	75	cm			
Weight	50	kg			
	100 230	VAC			
Power supply	50 60	Hz			
	600	W			

Measurement

Measurement type	Thermal steady-state characterization			
Applied standards	ASTM D 5470-17			
	Thermal resistance	mm²K/W		
Output	Thermal conductivity	W/(m·K)		
	Thermal interface resistance	mm²K/W		
Resolution	1.0	mm²K/W		

Sample properties

	min	max	
Sample size (round, diameter)	13	25.4	mm
Sample size (square, edge length)	10	25.4	mm
Sample thickness	< 0.001	10.0	mm
Measurement conditions			
Force (continuous)	-300 .	Ν	
Force (short-term)	-450.		
	- 10	4.5	MPa
	🗆 10 mm	652	Psi
Pressure (short-term)	<i>C</i> 25 4	0.9	MPa
	Ø 25.4 mm	130	Psi
Sample Temperature	20 150		°C
Measurement accuracy			
Sensor temperatures	± 0.2		К

Sample temperature		± 0.05	К
Sample thickness	load-free	± 1*	μm
	force load of x N	± 2 * 0.02x	μm
Mechanical load		± 1	Ν
Thermal resistance		< ± 5	%

Software screenshots

Key features

- » Full ASTM D 5470 compliance
- » Compact and all-in-one
- » Automated & scheduled testing
- » Swiftly exchangeable test heads
- » High precision thickness monitoring
- » Ease of use, optimized for user experience

Key output material and compound properties

- » Thermal resistance
- » Bulk thermal conductivity
- » Thermal interface resistance

Key testing schemes

- » Temperature dependency
- » Pressure dependency
- » Thermal performance
- » Interface quality
- » Thermo-mechanical stability
- » Aging behavior / life expectation

Scope of samples

- » Thermal interface material
- » Pastes and greases
- » Gap pads and gap filler
- » Foils and sheets
- » Adhesive and cured material
- » Mold compound
- » Underfiller
- » Substrates and interposer

The principle of ASTM D 5470

Samples are measured between two metal test heads that are known in geometry and physical properties. Measuring both temperature gradient ΔT over and heat flow Q through the sample returns its effective thermal resistance Rth_{eff}.

Repeating such measurement for multiple sample thicknesses allows to calculate the following linear fit to receive the sample's bulk thermal conductivity.

Linear fit of Rth over BLT

 $Rth_{eff} = Rth_{bulk} + Rth_0$

 ΔT

$$Rth_{eff} = \frac{\Delta T}{Q}$$

 $Rth_{eff} = \frac{1}{\lambda_{bulk} \cdot A} \cdot BLT + Rth_0$

The linear fit over the thickness bears information about bulk thermal conductivity and thermal interface resistance.

Determination of bulk thermal conductivity

- » Eff. thermal resistance over bond line thickness
 → Bulk thermal conductivity and contact resistance
- » Thickness range 25 to 200 μm
- » 60°C sample temperature

Thermal characterization of soft material

Measurement deviation

	Q [W]	5	10	15	20	25	30	40	50	
$\operatorname{Kin} = \Delta 1 / Q$		dQ	5.0%	3.9%	3.6%	3.5%	3.4%	3.3%	3.3%	3.3%
ΔT [K]	d∆T	dRth								
1	10.5%		15.5%	14.4%	14.1%	14.0%	13.9%	13.8%	13.8%	13.8%
2	5.5%		10.5%	9.4%	9.1%	9.0%	8.9%	8.8%	8.8%	8.8%
5	2.5%		7.5%	6.4%	6.1%	6.0%	5.9%	5.8%	5.8%	5.8%
10	1.5%		6.5%	5.4%	5.1%	5.0%	4.9%	4.8%	4.8%	4.8%
15	1.2%		6.2%	5.1%	4.8%	4.7%	4.6%	4.5%	4.5%	4.5%
20	1.0%		6.0%	4.9%	4.6%	4.5%	4.4%	4.3%	4.3%	4.3%
25	0.9%		5.9%	4.8%	4.5%	4.4%	4.3%	4.2%	4.2%	4.2%
30	0.8%		5.8%	4.7%	4.4%	4.3%	4.2%	4.1%	4.1%	4.1%
40	0.8%		5.8%	4.7%	4.4%	4.3%	4.2%	4.1%	4.1%	4.1%
50	0.7%		5.7%	4.6%	4.3%	4.2%	4.1%	4.0%	4.0%	4.0%
60	0.7%		5.7%	4.6%	4.3%	4.2%	4.1%	4.0%	4.0%	4.0%
70	0.7%		5.7%	4.6%	4.3%	4.2%	4.1%	4.0%	4.0%	4.0%
90	0.6%		5.6%	4.5%	4.2%	4.1%	4.0%	3.9%	3.9%	3.9%
100	0.6%		5.6%	4.5%	4.2%	4.1%	4.0%	3.9%	3.9%	3.9%

