
esstechnik

R

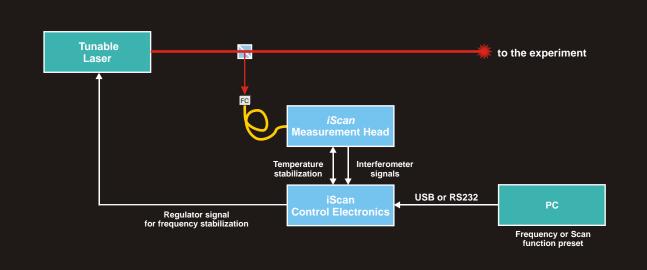
iScan[®]

The interferometric frequency control for tunable lasers

The iScan is designed for research laboratories as a universal tool for static and dynamic control of the frequency and mode properties of tunable lasers.

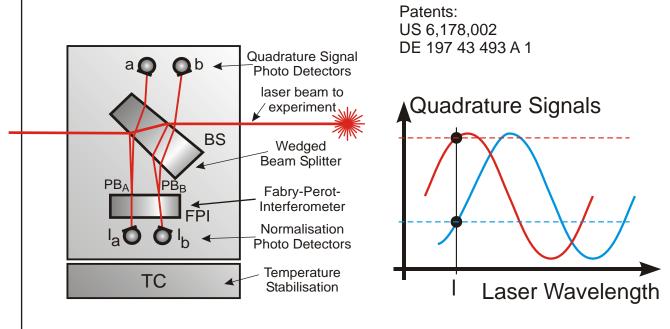
- fast and precise scanning of tunable lasers
- stepping to different arbitrary wavelengths
- surveillance of the scan behaviour of tunable lasers
- Measurement of the wavelength and single-mode stability of tunable lasers

The *iScan* system consists of a measurement head and the control electronics.


The *iScan* system is suitable for almost any kind of tunable lasers: diode lasers, DBR and DBF diodes, Ti: Sapphire lasers, dye lasers...

The measurement head contains the interferometer optics, photo detectors, preamplifiers, temperature sensing and control.

The *iScan Control Electronics* evaluates results of the *iScan* measurement head. It optionally controls the diode laser as well (current, power, temperature). When operated in a closed feedback loop, the control electronics provides a regulator signal to stabilize or tune the laser frequency.



The *iScan* measurement head can be adapted to any wavelength in the range of 380...1100 nm (other wavelengths on request). It is available as a single-mode fiber-coupled stand-alone unit or as an OEM part for direct integration into a laser (e.g. Toptica *DL 100* series).

A free-beam stand-alone head is available on request.

The *iScan* system employs a patented interferometer setup with four independent photo detectors. The detectors receive several interference signals with a phase difference of approx. 90° (quadrature signals), allowing for monitoring of the tuning behaviour and detection of mode hops.

N C a l

Displaying the quadrature signals on a 2-channel oscilloscope in xy-mode yields characteristic figures (Lissajous figures), which correspond to the properties of the laser.

The inner circle represents the scan defined by the microcontroller. The iScan electronics stabilizes the tunable laser towards this scan.

Single-mode-scan:

The quadrature signals describe a round ("Airy"-) circle with fixed radius.

- The angle corresponds to wavelength
- The radius corresponds to mode purity

Mode hop:

Sudden jump across the circle.

Multi-mode-scan:

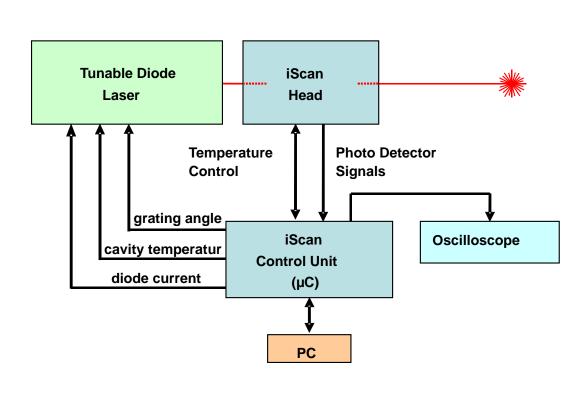
Circle with a significantly smaller and non-constant radius.

Key Features:

- Laser wavelength stabilization to **arbitrary** values within the tuning range of the laser
- Highly accurate stabilization of the laser frequency whilst tuning, thus: elimination of hysteresis, non-linearities, mechanical vibrations and drift
- High measurement speed with simultaneously high resolution (MHz bandwidth)
- Measurement of long-term and short-term wavelength stability without the need to keep the laser frequency constant. (Mechanical or thermal drift, jitter, technical bandwidth)
- Comfortable tool for adjustment and optimization of the scanning laser cavity
- Available as stand-alone module or in combination with an ECDL
- Compact design

Measurement Head:

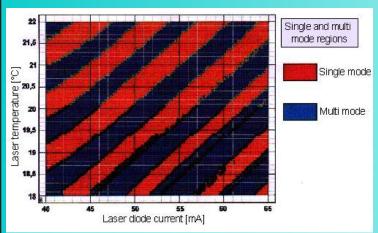
- Interferometer suitable for 380 to 1100 nm wavelength range (other wavelength on request)
- Entire optical setup is thermally stabilized to high precision


Control Electronics:

- Digital interfaces: USB and/or RS232
- Arbitrary scans can be realized, including scans for accurate linear frequency tuning of any tunable laser
- Driver and control electronics are integrated in a closed 19"-rack

Options:

- Temperature and current driver for diode lasers integrated into control electronics
- Fiber connector unit for coupling of arbitrary laser sources into *iScan*, allowing for fast exchange of different laser devices
- Adaptation to tunable solid state lasers such as Alexandrite or Ti:Sapphire lasers, tunable dye lasers and frequency-doubled systems
- Optics and detectors for communication wavelengths
- For different Free Spectral Ranges of 1.5 THz to 8 GHz an interferometer length between 0.1 and 13 mm is possible, resulting in different resolution power and stabilities
- Stabilization of several lasers relative to each other possible
- Additional high voltage or current outputs for piezo or galvo actors, respectively
- Combination with saturation spectroscopy module Cosy for absolute wavelength reference



Acquisition of mode stability charts

In general, tuneable lasers contain a number of electrically driven resonator elements. A mode-hop free frequency scan requires a set of complicated voltage and/or current functions to be applied to these elements. E.g. external cavity diode lasers need the cavity temperature, the injection current and the grating position to be adjusted simultaneously.

As the *iScan* system includes a more-dimensional arbitrary waveform generator and a microprocessor, it can scan through all accessible parameters automatically and find single-mode "corridors" in the parameter space.

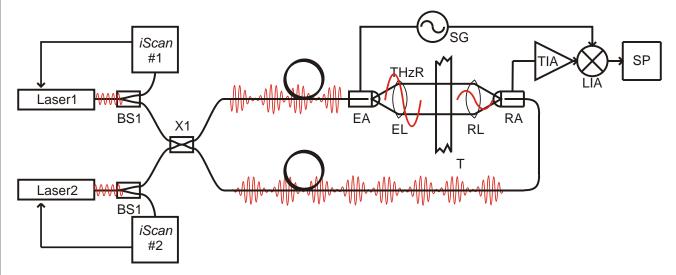
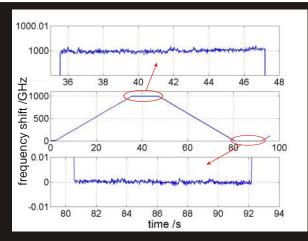
Mode chart of a tunable diode laser, recorded with the setup described above.

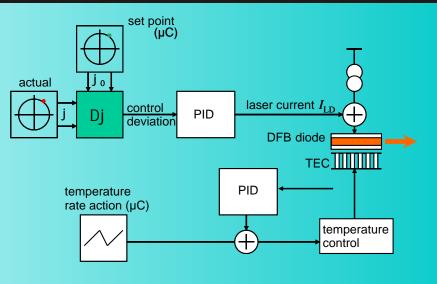
The plot characterizes laser operation as a function of temperature and injection current of the laser diode. Red stripes indicate areas of stable single mode operation, compared to the blue stripes indicating multi mode operation.

Application Example II: cw THz

Precision Frequency Metrology and Stabilization for Continuous Wave (cw) THz Sources Based on Two-Color Laser Mixing

One method of generating THz radiation is optical heterodyning of two continuous laser fields on a semiconductor photomixer. The advantage of a cw THz source compared to pulsed sources is the fact that measurements can take place at arbitrarily chosen, fixed or variable THz frequencies for unlimited and uninterrupted time intervals. This allows, e.g., for high resolution spectroscopy, or for interferometric distance or refractive index measurements.


Fig.1: Typical cw THz setup with interferometric frequency control (Laser1/2: Tunable DFB diode lasers; *iScan* 1,2: *iScan* interferometer; BS: Fiber coupler; EA, RA: emitting/receiving antenna; EL/RL: emitter/receiver lens; SG bias signal generator; TIA: transimpedance amplifier; LIA: lock-in amplifier; SP: signal processing)

Example 1: Precisely linear 1000GHz scan with some seconds hold at either end

Example 2: Long-term stable optical beat frequency (at 1K change of ambient temperature)

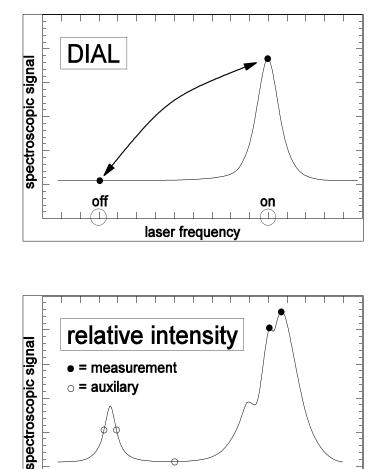
Servo loop for DFB laser diodes

The servo consists of a pair of nested PID loops. The first PID adjusts the laser current such that the laser frequency approaches its target value. In order to prevent changes of the laser power, a second PID controls the temperature in a way that the output power remains constant.

Literature:

Deninger et al.: Precisely tunable continuous-wave terahertz source with interferometric frequency control REVIEW OF SCIENTIFIC INSTRUMENTS 79, 044702 (2008)

Phase Shifting Interferometry Extremely precise inspection of high quality optics with a Fizeau Interferometer **Test object** Reference Surface Telescope iScan Laser Measurement Head Temperatur-Interferometer stabilization signals **CCD-camera** iScan control electronics **Regulator signal** for frequency stabilisation Frequency setting, Scan definition PC


Conventional phase shifting interferometers need the reference surface to be moved in 1/8 steps for the phase extraction. This mechanical motion can be replaced by an adequate shift of the laser wavelength. In this case, the *iScan* system guarantees high-accuracy wavelength stepping at arbitrary step width and duration.

LIDAR and spectroscopy

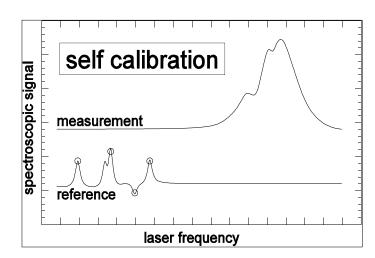
The usage of iScan allows for

- dynamic frequency hopping,
- variable offset stabilization,
- · top-of-fringe stabilization and
- side-of-fringe stabilization.

DIAL

Switching amplitude: arbitrary (limited by the laser)

Switching frequency: ~1 kHz (limited by laser mechanics) (small jumps: up to 100 kHz)


Switching accuracy: ~10 MHz

Switching repeatability:~1MHz

Complex Measurements

Use of spectroscopic features to optimize tuning parameters.

Arbitrary number of measurement points.

off

laser frequency

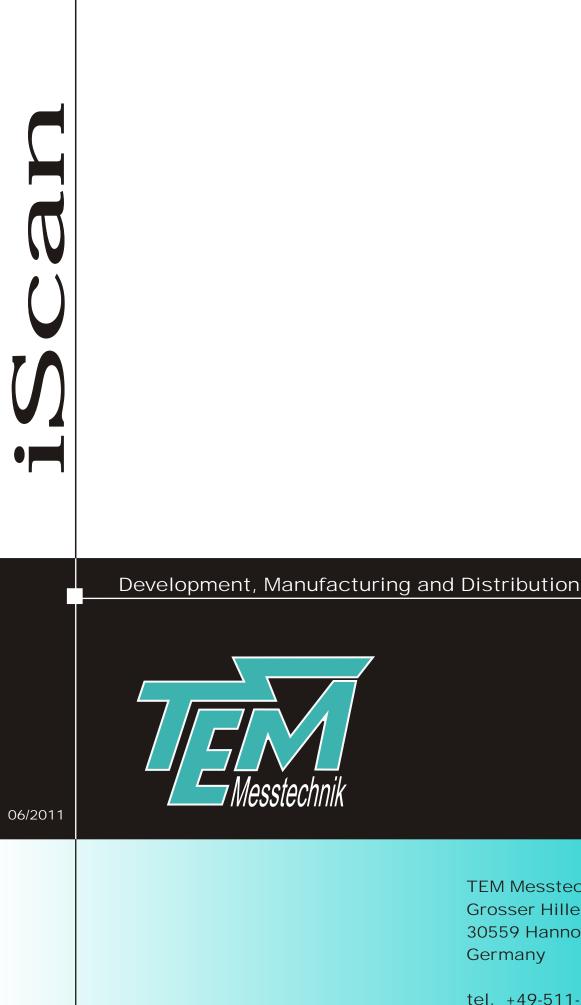
specimen

reference

Spectroscopic reference

Use of a well known atomic transition as reference.

Automatic online recalibration of laser tuning parameters.


Technical data

Interferometer wavelength range: Power requirements:	380 nm to 1100 nm 800nm to 1700nm (IR option) 1200nm to 2700nm (IRext option) (other wavelengths on request) minimum 20 100 μW (wavelength dependent) maximum 50mW
Free spectral range of interferometer:	2/4/8 or 100 GHz (others on request)
Beam diameter for free-beam head:	0.7 3 mm
Frequency stability:	<<50 MHz for 10 hours < 1 MHz for 10 minutes up to 1 MHz absolute, if locked to atomic reference
Frequency linearity:	<1% of FSR (standard), 0.05% of FSR (with linearization kit)
Frequency scale error:	<5*10 ⁻⁴ (standard) <1*10 ⁻⁶ (with dispersion correction kit)
Fiber connector:	FC-APC
Dimensions: measurement head control electronics in 19"-rack	115 mm x 80 mm x 80 mm 483 mm x 343 mm x 150 mm
Interface:	RS232, USB
Electrical supply:	100 … 120 / 200 … 250 V AC, 50 to 60 Hz (switched automatically)

i Soan

Subject to change without notice. Customer specific solutions on request.

TEM Messtechnik GmbH Grosser Hillen 38 30559 Hannover Germany

tel. +49-511-51089630 fax +49-511-51089638 info@tem-messtechnik.de

www.tem-messtechnik.de