

SL-GT-10 Laser Plasma Gas Target

High-density fast-switching compact gas jet

- High-density gas jet system (above n_c for near-IR laser wavelengths)
- Sub-millimetric jet size from stainless steel nozzles
- Customized and easy-to-tune output flow
- Open/close timescale within few ms
- Compatible with secondary vacuum pump assembly

The SL-GT-10 system, originally developed at Laboratoire d'Optique Appliquée, is a high-pressure fast-switching gas jet assembly conceived for the interaction between a high-intensity laser and a gaseous target at very high density (above the critical density n_c for a near-infrared laser wavelength). This system can be used for plasma microscopy in the near-critical regime, and high-energy particle or radiation generation, such as coherent XUV pulses, electron or ion beam acceleration.

Design and hardware

The SL-GT 10 is designed to enable a localized interaction length, below 1 mm, along with an

Examples of applications

- Particle acceleration
- Plasma microscopy
- Coherent XUV amplification

efficient coupling between the intense laser pulse and the plasma. To this end, the stainless steel nozzle delivering the jet has a sub-millimetric exit diameter (typically 400 μ m), that shape the gas flow for obtaining the appropriate Mach number M, and the backing pressure can be set up to 350 bar. Thanks to the fast-switching valve specially developed for laser-plasma experimental conditions, the system is also compatible for safe operations with a standard turbo-pumping assembly (<10⁻³ mbar).

The SL-GT 10 system comprises mainly:

- A pneumatic air-driven pressure booster, compressing the inlet pressure from typically 50 bar (supplied by standard gas cylinder) to an outlet pressure of more than 300 bar. The booster is adapted for pulsed operations requiring moderate gas throughput.
- An analog/digital air controller (0-10 bar) for setting the booster working point.

A special rapid reaction valve, working with a pressure ratio inlet/outlet above 30. The valve open and close with a rotating stainless steel ball ensuring fast-switching and long-term operation (above 1 billion oscillations).

- A high-amp power supply (11A, 32V) to trigger the valve.
- One sub-millimetric nozzle shaping the gas flow.
 Optimized microjets designed for the SL-GT-10 system cover the range from subsonic (M<1) to supersonic (M≈6) flows.
- High-pressure pipes and connectors, including quick connectors for easy coupling/decoupling of the valve to the high-pressure line (tested up to 350 bar).

Quicker access to your physics and applications

Performances

The SL-GT-10 system offers stable and shot-to-shot reproducible conditions to explore the near-critical regime of interaction with a near-IR laser beam (e.g. a Ti:Sapphire laser system at λ_0 =800 nm). The system can be used with various rare gases (He, Ar, Ne) and gaseous mixtures of these gases. Different millimetric and sub-millimetric nozzle types can be installed. The typical atomic peak density at the exit of a sub-millimetric nozzle is close to 2 x 10²¹ atoms/cm³ (see Fig. 1).

Fig. 1: Neutral He profiles n_a normalized to the atomic critical density n_{ca} at 100 (red line), 200 (blue line), and 300 μ m above a 400 μ m sonic nozzle from Abel-inversion. The dotted lines indicate best exponential fits (ref: F. Sylla et al, RSI (2012)).

The versatility of the SL-GT-10 system enables the experimentalist to produce flows of various Mach

Technical data

Jet performances

Atomic peak density (with a 400 μ m-cylindrical noz	zle exit)
Mach number (with a sub-millimetric nozzle)	
Gradient scale length (with a 400 μ m-cylindrical no	ozzle exit)
Repetition rate	
Open/close time	
Compatible nozzle type	
Valve	
Valve dimensions (L x r)/mass	
Valve pressure limit	
Valve open/close timescale	
Air-driven booster	
Inlet pressure	
Outlet pressure	
Digital control	
High-pressure pipes	
Length	
pressure	

numbers (from subsonic M<1 to supersonic M>>1 flows), and gradient scale lengths over a ten-fold range (from 100 μ m to 1 mm). It is particularly adapted to study parametrically laser pulse propagation conditions and energy coupling (see Fig. 2) via optical diagnostics (plasma microscopy).

Fig. 2 : Sonic (red), transonic (blue), and supersonic (green) flows (best fits) for three nozzles of throat diameters 400, 300, and 100 μ m respectively (same exit diameters of 400 μ m). The curves are normalized to the peak density at 200 μ m. The solid and dashed lines correspond to profiles at 200 and 300 μ m from the exit, respectively. Both vertical and radial gradients become larger as the sonicity (Mach number) decreases (ref: F. Sylla et al, RSI (2012)).

Scientific publications

- F. Sylla et al, Phys. Rev. Lett., 110, 085001 (2013)
- F. Sylla et al, Phys. Rev. Lett., 108, 115003 (2012)
- F. Sylla et al, Rev. Sci. Instr., 83, 033507 (2012)

exit)	> 2x10 ²¹ atoms/cm ³ (helium, argon, neon)
	Up to 6
exit)	< 400 μm
	1 Hz (with a pumping capacity of 2500 sccm of N_2)
	15 ms / < 40 ms
	Min. 100 μ m of critical diameter
	90 x 34 (mm x mm) /1.5kg
	Max. 700 bar
	< 3 ms
	Min. 30 bar
	Max. 400 bar
	Yes (in option)
	Up to 3 m (flexible)
	Max. 344 bar

Quicker access to your physics and applications