

Product overview

C ristal Laser, a privately owned, independent business located near Nancy, France, is specialized in crystal growth and processing for applications in non-linear and laser optics. The company, founded in 1990 by a team of researchers and engineers, started the production of KTP crystals at an industrial scale thanks to an exclusive licence granted from CNRS, the French Council for Scientific Research ■

A long way has been gone since then. Today, Cristal Laser has become one of the major players in its area of business. In 2004, the company moved into brand new, tailor-made premises with enough space for

its staff of 14 technicians and engineers as well as its world class manufacturing equipment. The company is outfitted with more than 50 resistive crystal growing stations, and also state-of-the art cutting, dicing, grinding and polishing machines, allowing for mass production as well as one-piece manufacturing at the best quality standards. A newly acquired automatic cleaning machine enables Cristal Laser to meet the most stringent cleanliness requirements. A whole set of controlling tools,

including an X-ray g o n i o m e t e r, interferometers, microscopes and laser measurement benches, ensures that none of the finished crystals is shipped without a thorough and extensive quality check-up

C ristal Laser's production range includes KTP (Potassium Titanyle Phosphate) and other crystals of the same family, such as KTA, RTP and RTA, and also LBO. These crystals are widely used in many applications covering areas from laser surgery, to life sciences, security and defence as well as material processing. Over the years the company gained the confidence of a broad customer base, established in America, Europe and the Far East. Thanks to them, the company achieved a steady and sustainable growth pace over the past years, regardless macro-economic factors or market conditions in particular business areas

Cristal Laser S.A - Parc d'Activité du Breuil - 32, rue Robert Schumann - F-54850 Messein FRANCE Phone: +33(0)3 83 47 01 01 - Fax: +33(0)3 83 47 22 72 - www.cristal-laser.fr - mail@cristal-laser.fr

KTP >

Applications

Operation	Advantages	Field of Application
SHG		
 Fundamental range: 1.0-1.3μm 	 Large non-linear coefficient (~3 pm/V at 1064/532 nm) Small walk-off 	 Low-power CW scientific lasers Surgical lasers (ophtalmology, dermatology) Ti: Sapphire laser pumping
OPO		
 X-cut Signal wavelength: 1.57 μm OPO range: 1.53 - 3.0 μm 	 Monolithic design available: OPO mirrors on the crystals'faces High efficiency Walk-off compensating design available at 2.1 µm 	 Eye-safe instruments (target designators, range finders) ZGP OPO pumping

Optical properties

Average refractive index			1.8		
Coefficients in Sellmeier's equation)	Index	А	В	С	D
	nx	3 <mark>.006700</mark>	0.039500	0.04 <mark>251</mark> 0	0.012470
$n_i^2 = A_i + \frac{B_i}{(\lambda^2 - C_i)} - D_i \lambda^2$	Ny	3.031900	0.041520	0.045860	0.013370
$(\lambda^2 - C_i)$	nz	3.313400	0.056940	0.059410	0.016713
for 0.5 < λ < 3,5 μm	C. Bonnin, C	Cristal Laser			
Temperature coefficients of refractive indice	s, °C -1		βnx		3.12 x 10 ⁻⁶
$\begin{bmatrix} T & 2T^{*}C \\ and R & 1 \\ \Delta n \end{bmatrix}$			β ny		3.6 x 10 -6
T = 25°C and $\beta = \frac{1}{n} \frac{\Delta n}{\Delta T}$			βnz		6.24 x 10 ⁻⁶
Transparency range, μm					$0.35 \rightarrow 4.5$
Residual absorption (Photo-thermal Common-	nath Interfer	ometer): <50 r	nm/cm at 10	6/nm <1%	

Residual absorption (Photo-thermal Common-path Interferometer): <50 ppm/cm at 1064 nm, <1%/cm at 514 nm

Physical properties

Chemical formula		KTiOPO ₄
Crystal structure		Orthorhombic
Point group		mm ²
Lattice parameters, Å	а	12.82
	b	6.40
	С	10.59
Hardness (Mohs)		Near 5
Hygroscopic susceptibility		none
Density, g.cm ⁻³		3.03
Specific heat, cal.g ⁻¹ .°C ⁻¹		0.1737
Ionic conductivity (room temperature, 10 kHz), S.cm ⁻¹		10 -6
Aperture, mm ²		up to 18x18
Length, mm		up to 35

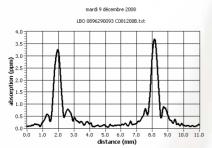
< LBO

0.16-2.6

Applications

Operation	Advantages	Field of Application
SHG		
 Fundamental range: 0.6-1.3μm 	 Small walk-off 	 High-power scientific CW lasers
• THG at 1.06 µm	 No grey-track 	 High rep. rate, high average
 FHG at 1.32 μm 	 Non-critical phase match 	power lasers for material
 UV wavelengths achievable: 	at T=150°C for SHG @ 1064 nm	processing
0.33-0.35 µm	 Very high bulk damage threshold 	 Gas laser replacement

Optical properties


Average refractive index			1.6		
Coefficients in Sellmeier's equation	Index	А	В	С	D
	nx	2.4542	0.01125	0.01135	0.01388
$\begin{bmatrix} n^2 - \Delta + B_i \\ - D_i \lambda^2 \end{bmatrix}$	ny	2.5390	0.01277	0.01189	0.01848
$\left[n_{i}^{2} = A_{i} + \frac{D_{i}}{(\lambda^{2} - C_{i}^{2})} - D_{i}\lambda^{2}\right]$	nz	2.5865	0.01310	0.01223	0.01861
	K. Kato IEEE	J.QE-26, 11	73 (1900)		

Transparency range, µm

Physical properties

Chemical formula		LiB ₃ O ₅
Crystal structure		Orthorhombic
Point group	the second se	mm ²
Lattice parameters, Å	а	8.44
	b	7.37
	С	5.14
Hardness, Mohs		5.5
Hygroscopic susceptibility		weak
Density, g.cm ⁻³		2.47
Specific heat, J/kg.K	and the second se	1060
Thermal conductivity, mW.cm ⁻¹ .°C ⁻¹		35
Aperture, mm		up to 30 x 30
Length, mm		up to 50

Absorption at 1064 nm of a 8 mm long LBO crystal

- Measured at Cristal Laser with a Photo-Thermal Common Path interferometer from SPTS
- Residual absorption : <10 ppm/cm at 1064 nm,
 <20 ppm/cm at 532 nm

RTP >

Applications

Operation and Advantages Field of Application

E-O phase modulation

- Thermally compensated design
- V_π = 1600 V at 1064 nm for a 4x4x10 pair
- No piezoelectric ringing
- Low operating voltages
- Fair damage threshold
- Q-switches at high rep. rates or where low operating voltages are needed.
- (e.g. space applications)
- Pulse-picking from a ps or fs pulsetrain

Picture of an E-O Q-switch

Optical properties

Average refractive index					1.8			
Coefficients in Sellmeier's equation		Ai	Bi	Ci	Di	Ei	pi	qi
$\mathbf{p}_{i}^{2}(\lambda) = \Lambda_{i} + \frac{B_{i}}{D_{i}}$	n×	<mark>2.19</mark> 82	0.8995	0.2152	1.5433	11.585	1.9727	1.9505
$n_{i}^{2}(\lambda) = A_{i} + \frac{B_{i}}{1 - \left(\frac{C_{i}}{\lambda}\right)^{e_{i}}} + \frac{D_{i}}{1 - \left(\frac{E_{i}}{\lambda}\right)^{e_{i}}}$	ny	<mark>2.28</mark> 04	0 <mark>.8459</mark>	0.2296	1.1009	9.660	1.9696	1.9369
	nz	2.3412	1.0609	0.2646	0.9714	8.149	2.0585	2.0038
for $0.5 < \lambda < 3.5 \mu m$	Y. C	Guillien et	al., Opti	cal Mater	<mark>ials 2</mark> 2 (20	<mark>0</mark> 3) 155-1	62	
Transparency ra <mark>nge, μm</mark>							0	.35-4.5
Residual absorption (Photo-thermal Co	mmo	n-path In	terferome	ter) : 100	ppm/cm a	i <mark>t 106</mark> 4nm	, 1%/cm a	t 532 nm
Electro-optical constants (@ 633 nm, 1 l	kHz),	pm. V ⁻¹	1		Г 33	33	.0	
				200	Г 13	10	.9	
					r 23	15	.0	
Dielectric constant (seff)						13		

Physical properties

Chemical formula	1000	RbTiOPO ₄
Crystal structure	and a star	Orthorhombic
Point group	and the second s	mm ²
Lattice parameters, Å	а	12.96
and the second se	b	10.56
	С	6.49
Hygroscopic susceptibility		None
Density, g.cm ⁻³		3.6
Ionic conductivity (room temperature), S.cm ⁻¹		10 ⁻¹⁰ to 10 ⁻⁹
Aperture mm ²		up to 9x9
Length mm	1000	up to 10

< BBO

Applications

Operation	Advantages	Field of Application
• THG at 1.06μm	 Fair efficiency 	 UV lasers for material processing
• 4HG at 1.06μm	 Best commercialy available 	 Gas laser replacement
 5HG at 1.06 μm 	crystal for 4HG and 5HG	
 OPO pumped at 532 nm 	 Widely tunable 	
or 355 nm	 High conversion efficiency 	
 E-O phase modulation 	 Excellent extinction ratio 	 Q-switches at high rep. rates or
	 Wide transmission range 	where high damage threshold is
	 High damage threshold 	needed

Optical properties

Average refractive index			1.6		
Coefficients in Sellmeier's equation	Index	А	В	С	D
$\left[n_{i}^{2} = A_{i} + \frac{B_{i}}{(\lambda^{2} - C_{f}^{2})} - D_{i}\lambda^{2}\right]$	no	2.7359	0.01878	0.01822	0.01354
	Ne	2.3753	0.01224	0.01667	0.01516
	Negati	ve uniaxial cr	rystal with no:	>n _e	
	K. Kato IEEE	J.QE-22, 10)13 (1986)		
Transparency range, μm					0.2-2.2
Residual absorption				< 0.1% / cr	n at 1064 nm

Physical properties

Chemical formula			β-BaB ₂ O ₄
Crystal structure			Trigonal
Point group	100		3m
Lattice parameters, Å		а	12.53
	2	b	12.53
	Se contraction	С	12.72
Hardness, Mohs	and an		4
Hygroscopic susceptibility	and the second second		High
Density, g.cm ⁻³			3.85
Specific heat, J/kg.K			490
Thermal conductivity, mW.cm ⁻¹ .°C ⁻¹	1996 C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1000	1.2(⊥c) 1.6(//c)
Aperture, mm ²	and the second sec		up to 13 x 13
Length, mm			up to 20

KTA >

Applications

Operation	Advantages	Field of Application
OPO		
 X-cut Signal wavelength : 	 High efficiency 	 Eye-safe instruments (target
1.54μm	 Small walk-off 	designators, range finders) with
• OPO range : 1.51-3.5 μm	 High transmission in the 	mid-high average powers
	3-3.5 μm range	 Spectroscopy, gas detection

Optical properties

Average refractive index			1.8		
Coefficients in Sellmeier's equation	Index	А	В	С	D
$\left[n_{i}^{2} = A_{i} + \frac{B_{i}\lambda^{2}}{(\lambda^{2} - C_{i}^{2})} - D_{i}\lambda^{2}\right]$	nx	1.90713	1.23522	0.19692	0.01025
	ny	2.15912	1.00099	0.21844	0.01096
	nz	2.14786	1.29559	0.22719	0.01436
for 0.4 < λ < 4 μ m	Fenimore, Schepler, Ramadabran, McPherson,				
	J. Opt. Soc.	Am. B Vol 12	2(5) 1995		

Transparency range, µm

Residual absorption (Photo-thermal Common-path Interferometer): 200 ppm/cm at 1064 nm

Physical properties

Chemical formula		KTiOAsO4
Crystal structure		Orthorhombic
Point group		mm ²
Lattice parameters, Å	а	13.12
	b	6.56
	С	10.79
Hardness (Mohs)		5.5
Hygroscopic susceptibility		none
Density, g.cm ⁻³		3.45
Ionic conductivity (room temperature, 10 kHz), S.cm ⁻¹		10-6
Aperture, mm ²		up to 10x10
Length, mm		up to 20

0.35-5.3

< KTP.fr

Applications

Operation

SHG

 Fundamental range : 1.0-1.3 μm

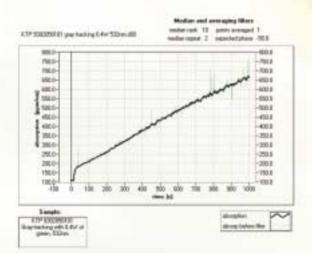
Advantages

- No gray-track
- Large non-linear coefficient (-3pm/Vat 1064/532 nm)
- Small walk-off

Field of Application

- Mid-power CW lasers (up to a few Watts at 532 nm) for scientific or medical applications.
- Extracavity SHG of KHz lasers (materials processing)

Optical properties - same as KTP


Physical properties

Ionic conductivity, (room temperature), S. cm ⁻¹	10 ⁻¹¹ to 10 ⁻¹⁰
Aperture, mm ²	up to 10 x 10
Length, mm	up to 10

According to KTP users, gray-track formation can cause harmonic power instability for many intracavity frequency-doubled CW lasers, and reduced conversion efficiency and crystal blackening in case of high power, high repetition rate Q-switched lasers. Sometimes the process is accompanied by beam distortion when the beam is tightly focused in the crystal.

The occurrence of gray-track in a KTP crystal can be measured by an increase of bulk absorption at 1064 nm induced by a strong CW green radiation at 532 nm (10 kW/cm²). This measurement was performed with the Photo-thermal Common-path Interferometer, a device developed at Stanford University, USA. The two graphs below show the difference between a standard KTP crystal and a grey-track full-resistant KTP.fr crystal, both produced at Cristal Laser.

Whereas the measured absorption sharply and steadily increases in the standard KTP as soon as the green laser is switched on, it rises and then quickly stabilizes in case of the KTP.fr, thus showing gray-track inhibition.

Manufacturing > standards

Facilities / Equipement

Tools	Controls
 SECASI X-ray goniometer 	 Binocular and DIC-microscopy
 Meyer & Burger slicing machine 	Interferometers
 Meyer & Burger dicing machine 	 Shadowgraph
 SOMOS grinding machines 	 Laser test benches for non-linear efficiency check-up
 SOMOS polishing machines 	 Laser benches for custom requirements
 Ultrasonic cleaning machine 	 Photo-thermal Common-Path Interferometer for absorption
	measurements

Specifications

Materials processed: laser crystals, glass, and non-linear crystals with typical aperture up to 10 x 10 mm² and length up to 30 mm

Aperture cut	tolerance +/-0.1mm
Length	tolerance +0.3/-0.2 mm
Parallelism	better than 20"
Perpendicularity	better than: 30' (standard), 10' on request
Flatness (λ =633 nm) within a 80 % circular clear aperture	better than $\lambda/10$
Orientation	+/-0.5° (standard), +/-0.1° on request
Roughness	better than 10 Å RMS
Scratch/dig	10-5
Wavefront distortion ($\lambda = 633$ nm)	better than $\lambda/4$ for less than 30 mm single pass length
For custom requirements please contact us	
· · · · ·	


Thin film coatings

Technologies available	e-beam, IAD, IBS	
Damage threshold	500 MW/cm ² AR-coated,	
	10J/cm ² at 10 Hz, 10 ns, 200 shots S on 1, beam size	
	at 1/e² 500 μm	
AR coatings	better than 0.1% (0.05% on request)	
e.g. for 1064/532 frequency-doublers	at 1064 nm, 0.5% at 532 nm	

2

- 1 Frequency-doubling KTP 20x20x5 mm crystal with KTP boule
- **2** KTP slab from boule pulled along the X-axis
- **3** Dicing of coated slabs
- 4 SHG crystal slightly out of phase match
- **5** Green beam stemming out of SHG crystal
- 6 As-grown LBO crystals
- Our facility on sunny days
- 8 Place Stanislas, Nancy, France

We do

Growth of non-linear crystals

Polishing

Optical controls

We serve

Industry

Healthcare & Science

Because they need Reliability

Skills

Reaction

Cristal Laser S.A

Parc d'Activité du Breuil 32, rue Robert Schumann F-54850 Messein FRANCE Phone : +33(0)3 83 47 01 01 Fax : +33(0)3 83 47 22 72

www.cristal-laser.fr / mail@cristal-laser.fr